首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Peracetic acid is used as a sterilant in several industrial settings. Cells of a plant-colonizing bacterium, Pseudomonas putida in liquid suspension, were more sensitive to killing by peracetic acid when they lacked a major catalase activity, catalase A. Low doses of peracetic acid induced promoter activity of the gene encoding catalase A and increased total catalase specific activity in cell extracts. Microbes present in native agricultural soils rapidly degraded the active oxygen species present in peracetic acid. The simultaneous release of oxygen was consistent with a role for catalase in degrading the hydrogen peroxide that is part of the peracetic acid-equilibrium mixture. Amendment of sterilized soils with wild-type P. putida restored the rate of degradation of peracetic acid to a higher level than was observed in the soils amended with the catalase A-deficient mutant. The association of the bacteria with the plant roots resulted in protection of the wild-type as well as the catalase-deficient mutant from killing by peracetic acid. No differential recovery of the wild-type and catalase A mutant of P. putida was observed from roots after the growth matrix containing the plants was flushed with peracetic acid.  相似文献   

2.
A catalase that exhibits a high level of activity and a rapid reaction with organic peroxides has been purified from Exiguobacterium oxidotolerans T-2-2T (EKTA catalase). The amino acid sequence of EKTA catalase revealed that it is a novel clade 1 catalase. Amino acid residues in the active site around the protoheme are conserved in the primary structure of EKTA catalase. Although the general interactions of molecules larger than hydrogen peroxide with catalases are strongly inhibited because of the selection role of long and narrow channels in the substrate reaching the active site, the formation rate of reactive intermediates (compound I) in the reaction of EKTA catalase with peracetic acid is 77 times higher than that of bovine liver catalase (BLC) and 1200 times higher than that of Micrococcus luteus catalase (MLC). The crystal structure of EKTA catalase has been determined and refined to 2.4 A resolution. The main channel structure of EKTA catalase is different from those of BLC and MLC. The rate constant of compound I formation in catalases decreased with an increase in the molecular size of the substrate. For EKTA catalase with a larger bottleneck 15 A from the iron (entrance of narrow channel) in the main channel, a lower rate of reduction in compound I formation rate with an increase in the molecular size of substrates was found. The increase in the rate constant of compound I formation in these catalases was directly proportional to the increase in the size of the bottleneck in the main channel when molecules of substrates larger than H2O2, such as organic peroxides, are used in the reaction. The results indicate that the size of the bottleneck in the main channel in catalase is an important factor in defining the rate of compound I formation corresponding to the molecular size of the substrates, and this was demonstrated. The Leu149-Ile180 and Asp109-Met167 combinations at the entrance of the narrow channel in EKTA catalase determine the size of the bottleneck, and each atom-to-atom distance for the combination of residues was larger than those of corresponding combinations of amino acid residues in BLC and MLC. The combination of these four amino acids is quite specific in EKTA catalase as compared with the combinations in other catalases in the gene database (compared with more than 432 catalase genes in the database).  相似文献   

3.
The role of catalase in hydrogen peroxide resistance in Schizosaccharomyces pombe was investigated. A catalase gene disruptant completely lacking catalase activity is more sensitive to hydrogen peroxide than the parent strain. The mutant does not acquire hydrogen peroxide resistance by osmotic stress, a treatment that induces catalase activity in the wild-type cells. The growth rate of the disruptant is not different from that of the parent strain. Additionally, transformed cells that overexpress the catalase activity are more resistant to hydrogen peroxide than wildtype cells with normal catalase activity. These results indicate that the catalase of S. pombe plays an important role in resistance to high concentrations of hydrogen peroxide but offers little in the way of protection from the hydrogen peroxide generated in small amounts under normal growth conditions.  相似文献   

4.
The aim of the presented study was determined the effectiveness of sporicidal activity the peracetic acid and the hydrogen peroxide against B. anthracis spores. In the investigations was used B. anthracis stain "Sterne" 34F2. As inactivators were applied 0,5 % natriumthiosulphate and catalase. The obtained results show that the sporicidal effect of studied substances depends from their concentration and operates time. 5% water solution of peracetic acid shows the full sporicidal activity after outflow 120 minutes and the hydrogen peroxide about concentration 30% after outflow 180 minutes. However the hydrogen peroxide.  相似文献   

5.
Pseudomonas aeruginosa is an obligate aerobe that is virtually ubiquitous in the environment. During aerobic respiration, the metabolism of dioxygen can lead to the production of reactive oxygen intermediates, one of which includes hydrogen peroxide. To counteract the potentially toxic effects of this compound, P. aeruginosa possesses two heme-containing catalases which detoxify hydrogen peroxide. In this study, we have cloned katB, encoding one catalase gene of P. aeruginosa. The gene was cloned on a 5.4-kb EcoRI fragment and is composed of 1,539 bp, encoding 513 amino acids. The amino acid sequence of the P. aeruginosa katB was approximately 65% identical to that of a catalase from a related species, Pseudomonas syringae. The katB gene was mapped to the 71- to 75-min region of the P. aeruginosa chromosome, the identical region which harbors both sodA and sodB genes encoding both manganese and iron superoxide dismutases. When cloned into a catalase-deficient mutant of Escherichia coli (UM255), the recombinant P. aeruginosa KatB was expressed (229 U/mg) and afforded this strain resistance to hydrogen peroxide nearly equivalent to that of the wild-type E. coli strain (HB101). The KatB protein was purified to homogeneity and determined to be a tetramer of approximately 228 kDa, which was in good agreement with the predicted protein size derived from the translated katB gene. Interestingly, KatB was not produced during the normal P. aeruginosa growth cycle, and catalase activity was greater in nonmucoid than in mucoid, alginate-producing organisms. When exposed to hydrogen peroxide and, to a greater extent, paraquat, total catalase activity was elevated 7- to 16-fold, respectively. In addition, an increase in KatB activity caused a marked increase in resistance to hydrogen peroxide. KatB was localized to the cytoplasm, while KatA, the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A P. aeruginosa katB mutant demonstrated 50% greater sensitivity to hydrogen peroxide than wild-type bacteria, suggesting that KatB is essential for optimal resistance of P. aeroginosa to exogenous hydrogen peroxide.  相似文献   

6.
The bactericidal properties of peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were compared in vitro using a rapid micromethod. A combination of peracetic acid and hydrogen peroxide was also tested to assess interactions. The activities of these agents, which are widely used as disinfectants, were evaluated against water isolates and culture collection strains. Peracetic acid and chlorine exhibited an excellent antimicrobial activity, with a relatively rapid destruction of 10(5) bacteria/mL. The time-dependent bactericidal activities of hydrogen peroxide and formaldehyde were the lowest. The combination of peracetic acid and hydrogen peroxide, tested by a checkerboard micromethod, was found to be synergistic. The minimal bactericidal concentration was established in terms of time for a given mixture of peracetic acid and hydrogen peroxide. Determination of bactericidal concentrations showed that synergy was maintained with increasing contact time. Concentrations for minimal times of treatment by chemicals that provided interesting activities in vitro were tested for disinfection of ultrafiltration membranes. The bactericidal activities of peroxygen compounds were confirmed and synergism was maintained in working conditions. Chlorine showed a loss of efficacy when used on membranes.  相似文献   

7.
The chimeric peroxidase PGdx of Haemophilus influenzae Rd belongs to a recently identified family of thiol peroxidases capable of reducing hydrogen peroxide as well as alkylhydroperoxides by means of glutathione redox cycling. In the present study, we constructed a H. influenzae Rd strain, deficient in its PGdx encoding gene (open reading frame HI0572). The mutant was shown by disk inhibition and liquid culture growth assays to exhibit increased susceptibility to organic hydroperoxides. The hampered growth was restored by complementing the interrupted gene on the genome with a replicating plasmid bearing an intact copy of the gene, hereby rejecting the possible influences of polar effects. Elevated levels of hydrogen peroxide scavenging activity, due to the catalase HktE, were measured in the absence of a functional pgdx gene rendering the mutant more resilient against hydrogen peroxide. On the other hand, after initiation of the stationary phase, aerobic cultures of the pgdx mutant were practically devoid of living cells, whereas wild-type counterparts retained viability. This observed feature was alleviated by complementation with the functional gene or with the addition of catalase.  相似文献   

8.
H S Soedjak  A Butler 《Biochemistry》1990,29(34):7974-7981
Vanadium bromoperoxidase (V-BrPO) has been isolated and purified from the marine brown algae Fucus distichus and Macrocystis pyrifera. V-BrPO catalyzes the oxidation of bromide by hydrogen peroxide, resulting in the bromination of certain organic acceptors or the formation of dioxygen. V-BrPO from F. distichus and M. pyrifera have subunit molecular weights of 65,000 and 74,000, respectively, and specific activities of 1580 units/mg (pH 6.5) and 1730 units/mg (pH 6) for the bromination of monochlorodimedone, respectively. As isolated, the enzymes contain a substoichiometric vanadium/subunit ratio; the vanadium content and specific activity are increased by addition of vanadate. V-BrPO (F. distichus, M. pyrifera, and Ascophyllum nodosum) also catalyzes the oxidation of bromide using peracetic acid. In the absence of an organic acceptor, a mixture of oxidized bromine species (e.g., hypobromous acid, bromine, and tribromide) is formed. Bromamine derivatives are formed from the corresponding amines, while 5-bromocytosine is formed from cytosine. In all cases, the rate of the V-BrPO-catalyzed reaction is much faster than that of the uncatalyzed oxidation of bromide by peracetic acid, at pH 8.5, 1 mM bromide, and 2 mM peracetic acid. In contrast to hydrogen peroxide, V-BrPO does not catalyze formation of dioxygen from peracetic acid in either the presence or absence of bromide. V-BrPO also uses phenylperacetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid to catalyze the oxidation of bromide; dioxygen is not formed with these peracids. V-BrPO does not catalyze bromide oxidation or dioxygen formation with the alkyl peroxides ethyl hydroperoxide, tert-butyl hydroperoxide, and cuminyl hydroperoxide.  相似文献   

9.
To create a conditional system for molecular analysis of effects of polyunsaturated fatty acids (PUFA) on cellular physiology, we have constructed a strain of yeast (Saccharomyces cerevisiae) that functionally expresses, under defined conditions, the Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This strain produces up to 15% PUFA, exclusively under inducing conditions resulting in production of 4-hydroxy-2-nonenal, one of the major end products of n-6 polyunsaturated fatty acid peroxidation. The PUFA-producing yeast was initially more sensitive to oxidative stress than the wild-type strain. However, over extended time of cultivation it became more resistant to hydrogen peroxide indicating adaptation to endogenous oxidative stress caused by the presence of PUFA. Indeed, PUFA-producing strain showed an increased concentration of endogenous ROS, while initially increased hydrogen peroxide sensitivity was followed by an increase in catalase activity and adaptation to oxidative stress. The deletion mutants constructed to be defective in the catalase activity lost the ability to adapt to oxidative stress. These data demonstrate that the cellular synthesis of PUFA induces endogenous oxidative stress which is overcome by cellular adaptation based on the catalase activity.  相似文献   

10.
Lactobacillus sake LTH677 is a strain, isolated from fermented sausage, which forms a heme-dependent catalase. This rare property is highly desirable in sausage fermentation, as it prevents rancidity and discoloration caused by hydrogen peroxide. A gene bank containing MboI fragments of chromosomal DNA from Lactobacillus sake LTH677 in Escherichia coli plasmid pBR328 was constructed. The catalase gene was cloned by heterologous complementation of the Kat- phenotype of E. coli UM2. The catalase structural gene, designated katA, was assigned to a 2.3-kb region by deletion analysis of the originally cloned fragment in plasmid pHK1000. The original chromosomal arrangement was determined by Southern hybridization. Protein analysis revealed that the catalase subunit has a molecular size of 65,000 Da and that the active catalase possesses a hexameric structure. The molecular size of the subunit deduced from the nucleotide sequence was determined to 54,504 Da. The N-terminal amino acid sequence of the 65,000-Da protein corresponded to the one deduced from the DNA sequence. After recloning of katA in the E. coli-Lactococcus shuttle vector pGKV210, the gene was successfully transferred and phenotypically expressed in Lactobacillus casei, which is naturally deficient in catalase activity.  相似文献   

11.
12.
We identified a gene encoding a catalase from the anaerobic bacteria Desulfovibrio vulgaris (Miyazaki F), and the expression of its gene in Escherichia coli. The 3.3-kbp DNA fragment isolated from D. vulgaris (Miyazaki F) by double digestion with EcoRI and SalI was found to produce a protein that binds protoheme IX as a prosthetic group in E. coli. This DNA fragment contained a putative open reading frame (Kat) and one part of another open reading frame (ORF-1). The amino acid sequence of the amino terminus of the protein purified from the transformed cells was consistent with that deduced from the nucleotide sequence of Kat in the cloned fragment of D. vulgaris (Miyazaki F) DNA, which may include promoter and regulatory sequences. The nucleotide sequence of Kat indicates that the protein is composed of 479 amino acids per monomer. The recombinant catalase was found to be active in the decomposition of hydrogen peroxide, as are other catalases from aerobic organisms, but its K(m) value was much greater. The hydrogen peroxide stress against D. vulgaris (Miyazaki F) induced the activity for the decomposition of hydrogen peroxide somewhat, so the catalase gene may not work effectively in vivo.  相似文献   

13.
Lactobacillus sake LTH677 is a strain, isolated from fermented sausage, which forms a heme-dependent catalase. This rare property is highly desirable in sausage fermentation, as it prevents rancidity and discoloration caused by hydrogen peroxide. A gene bank containing MboI fragments of chromosomal DNA from Lactobacillus sake LTH677 in Escherichia coli plasmid pBR328 was constructed. The catalase gene was cloned by heterologous complementation of the Kat- phenotype of E. coli UM2. The catalase structural gene, designated katA, was assigned to a 2.3-kb region by deletion analysis of the originally cloned fragment in plasmid pHK1000. The original chromosomal arrangement was determined by Southern hybridization. Protein analysis revealed that the catalase subunit has a molecular size of 65,000 Da and that the active catalase possesses a hexameric structure. The molecular size of the subunit deduced from the nucleotide sequence was determined to 54,504 Da. The N-terminal amino acid sequence of the 65,000-Da protein corresponded to the one deduced from the DNA sequence. After recloning of katA in the E. coli-Lactococcus shuttle vector pGKV210, the gene was successfully transferred and phenotypically expressed in Lactobacillus casei, which is naturally deficient in catalase activity.  相似文献   

14.
采用苯酚羟化酶基因特异引物检测苯酚降解菌   总被引:18,自引:2,他引:16  
根据苯酚羟化酶基因高度保守序列设计了一对该基因的特异PCR引物。采用该特异引物从苯酚降解菌醋酸钙不动杆菌 (Acinetobactercalcoaceticus)PHEA 2的总DNA中扩增到唯一一条大小为 684bp的片段。该DNA片段与已知的A .calcoaceticusNCIB82 50的苯酚羟化酶基因具有高度的同源性 ,其核苷酸序列的同源性为 84% ,推导的氨基酸序列的同源性为 98%。对苯酚和非苯酚降解菌株的PCR扩增结果表明 :所有苯酚降解菌均能扩增出 684bp的特征片段 ,而非苯酚降解菌则无PCR条带。对炼焦废水中的细菌群落进行PCR扩增和生化特性检测表明 :显示 684bp特征片段的菌株均具有苯酚降解特性。上述结果表明 ,利用苯酚羟化酶基因的特异引物可对环境中的苯酚降解菌株进行准确快速的PCR检测。  相似文献   

15.
The antimicrobial properties of aqueous solutions of peracetic acid and hydrogen peroxide have been compared. Peracetic acid exhibited excellent antimicrobial properties, especially under acidic conditions. Reductions by a factor of 106 in the numbers of vegetative bacteria are obtained within 1 min at 25°C using a solution containing 1.3 mmol/l of peracetic acid. Rapid activity against bacterial spores and yeasts also occurs. Hydrogen peroxide is more effective as a sporicide than as a bactericide, with sporicidal action being obtained using a solution containing 0.88 mol/l. Bactericidal action is poor but hydrogen peroxide was bacteriostatic at concentrations above 0.15 mmol/l.  相似文献   

16.
D K Bol  R E Yasbin 《Gene》1991,109(1):31-37
A Bacillus subtilis library of Tn917::lacZ insertions was screened for mutants that were unable to grow in the presence of normally sublethal concentrations of hydrogen peroxide. The identification and subsequent analysis of one mutant strain, YB2003, which carried the mutation designated kat-19, revealed that this strain was deficient in the expression of a vegetative catalase. Regions of the chromosome both 5' and 3' to the site of the Tn917 insertion, as well as the gene without the insertion (kat-19+) were cloned. The presence of the functional kat-19+ gene on a high-copy plasmid restored catalase activity to the kat-19::Tn917 strain as well as to strains of B. subtilis that carried the katA 1 mutation. While the katA+ locus is believed to represent the structural gene for the vegetative catalase of B. subtilis [Loewen and Switala, J. Bacteriol. 169 (1987) 5848-5851], the sequence analysis of the cloned kat-19+ DNA fragments revealed an open reading frame that showed significant homology between the deduced amino acid sequence of this gene product and that of known eukaryotic catalases.  相似文献   

17.
Catalase-deficient strains of the human pathogenic yeast Candida albicans were constructed using the URA-blaster method. The disruptant was viable and grew normally in an ordinary culture condition, but became extremely sensitive to treatment with hydrogen peroxide. No catalase activity was observed in a catalase (CCT)-gene-disrupted strain, 1F5-4-1, suggesting that there were no other catalase or catalase-like enzymes in this yeast. The disruptant was shown to be sensitive to higher temperature and to low concentrations of SDS, NP-40, or Triton X-100. After a wild-type CCT gene was reintroduced into the disruptant, catalase activity was restored and the strain became moderately sensitive to treatment with hydrogen peroxide. However, neither the temperature sensitivity nor the susceptibility to SDS observed in the disruptant was restored in the CCT-reintroduced strain. A model infection experiment using wild-type and dCCT strains showed that the disruptants disappeared more rapidly than the wild-type strain in mouse liver, lung, and spleen. These results suggest that the catalase plays a significant role in survival in the host immune system and thus leads this organism to establish infection in the host.  相似文献   

18.
The gene encoding Co(2+)-activated bromoperoxidase (BPO)-esterase (EST), catalyzing the organic acid-assisted bromination of some organic compounds with H2O2 and Br(-) and quite specific hydrolysis of (R)-acetylthioisobutyric acid methyl ester, was cloned from the chromosomal DNA of the Pseudomonas putida IF-3 strain. The bpo-est gene comprises 831 bp and encoded a protein of 30181 Da. The enzyme was expressed at a high level in Escherichia coli and purified to homogeneity by ammonium sulfate fractionation and two-step column chromatographies. The recombinant enzyme required acetic acid, propionic acid, isobutyric acid or n-butyric acid in addition to H2O2 and Br(-) for the brominating reaction and was activated by Co(2+) ions. It catalyzed the bromination of styrene and indene to give the corresponding racemic bromohydrin. Although the enzyme did not release free peracetic acid in the reaction mixture, chemical reaction with peracetic acid could well explain such enzymatic reactions via a peracetic acid intermediate. The results indicated that the enzyme was a novel Co(2+)-activated organic acid-dependent BPO (perhydrolase)-EST, belonging to the non-metal haloperoxidase-hydrolase family.  相似文献   

19.
20.
Spores of Bacillus subtilis SA22, harvested from nutrient agar after 9 d at 30°C and stored in distilled water at 4°C, were unaltered in their resistance to 17.7% hydrogen peroxide or 0.04% peracetic acid after storage for up to 134 weeks. Three spore crops of B. subtilis globigii were unaffected by storage for up to 134 weeks with respect to 17.7% hydrogen peroxide resistance but were significantly more resistant to 0.04% peracetic acid following storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号