首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
好氧反硝化生物脱氮技术的研究进展   总被引:3,自引:1,他引:3  
好氧反硝化生物脱氮技术自提出以来,凭借能实现同步硝化反硝化、节省基建投资及运行费用等诸多优点,受到国内外环境领域学者的广泛关注。本文首先总结了近年来好氧反硝化菌种的筛选分离情况,以及环境因子对好氧反硝化菌脱氮效能的影响,包括溶解氧(dissolved oxygen,DO)、碳氮比(C/N)、温度等。然后深入探讨了好氧反硝化生物脱氮技术的原理,好氧反硝化过程中的关键功能基因及酶,同时介绍了分子生物技术在好氧反硝化研究过程中的应用,以及好氧反硝化生物脱氮技术在实际应用方面的研究现状。最后,基于目前的研究瓶颈问题,对未来好氧反硝化生物脱氮技术的研究方向提出了科学展望。  相似文献   

2.
Toluene vapour removal in a laboratory-scale biofilter   总被引:4,自引:0,他引:4  
A bench-scale biofilter with a 0.5-m high filter bed, inoculated with a toluene-degrading strain of Acinetobacter sp. NCIMB 9689, was used to study toluene removal from a synthetic waste air stream. Different sets of continuous tests were conducted at influent toluene concentrations ranging over 0.1–4.0 g m−3 and at superficial gas velocities ranging over 17.8–255 m h−1. The maximum volumetric toluene removal rate for the biofilter (242 g m−3 h−1) was obtained at a superficial gas velocity of 127.5 m h−1 (corresponding to a residence time of 28 s) and a toluene inlet concentration of 4.0 g m−3. Under these operating conditions, toluene removal efficiency was only 0.238, which suggested that effective operation required higher residence times. Removal efficiencies higher than 0.9 were achieved at organic loads less than 113.7 g m−3 h−1. A macro-kinetic study, performed using concentration profiles along the bioreactor, revealed this process was limited by diffusion at organic loads less than 100 g m−3 h−1 and by biological reaction beyond this threshold. Received: 10 October 1999 / Received revision: 15 February 2000 / Accepted: 18 February 2000  相似文献   

3.
Presently, the wastewater treatment practices can be significantly improved through the introduction of new microbial treatment technologies. To meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of ammonium from wastewater have to be implemented. Partial nitrification to nitrite was reported to be technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. For successful implementation of the technology, the critical point is how to maintain partial nitrification of ammonium to nitrite. Partial nitrification can be obtained by selectively inhibiting nitrite oxidizing bacteria through appropriate regulation of the system’s DO concentration, microbial SRT, pH, temperature, substrate concentration and load, operational and aeration pattern, and inhibitor. The review addressed the microbiology, its consequences for their application, the current status regarding application, and the future developments.  相似文献   

4.
The upflow bioreactor system without biomass-liquid separation unit was evaluated for its efficacy in sustaining autotrophic nitrification and denitrification (AND). The bioreactor system was capable of sustaining AND by means of carefully controlled oxygenation to achieve the maximum NH(4)(+)-N removal rate of 0.054 g N gVSS(-1) day(-1) (38% removal efficiency) at the oxygen influx and nitrogen loading rate of 3.68 mg O(2) h(-1) L-bioreactor(-1) and 182 mg N day(-1) L-bioreactor(-1), respectively. Additional nitrogen removal was achieved in a two-stage bioreactor configuration due to endogenous denitrification under long mean cell residence time. Quiescent conditions maintained in the bioreactor provided stable hydrodynamic environments for the chemoautotrophic biomass matrix, which revealed porous, loosely-structured, and mat-like architecture. More than 95% of the total biomass holdup (1.3-1.5 g VSS) was retained, thereby producing low biomass washout rate ( approximately 40 mg VSS day(-1)) with VSS < 11 mg VSSL(-1) in the effluent.  相似文献   

5.
Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(such…  相似文献   

6.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

7.
新型脱氮微生物与水体脱氮新工艺研究进展   总被引:1,自引:0,他引:1  
氨氮是河流等淡水资源有机污染的主要污染指标之一。生物脱氮具有低成本、高效、无二次污染和易操作等优点,极具发展前景。重点概述了水体净化系统中新型脱氮微生物的种类及研究进展,介绍了厌氧氨氧化、短程硝化-反硝化和分段进水生物脱氮等高效节能新工艺的工艺原理。  相似文献   

8.
A steady state model was developed to predict water movement within the biofilter bed. The model’s predictions were compared to experimental data from a downward flow biofilter (50 cm×10 cm i.d.) using compost for removing methanol with concentrations in the range of 0.46–8.41 g m−3 and flow rates of 1.36–4.08 m3 per day. The Wani et al. [J. Chem. Technol. Biotechnol. 74 (1999) 9] method of macrokinetic determination was used to estimate the kinetic parameters, and the predicted results showed that this method could be used for methanol removal systems as long as the conversion rate is not limited by diffusion in the biofilm (reaction-controlled regime). The leachate from the biofilter was collected and compared to the model predictions. The amount of collected water increased much more rapidly with inlet methanol concentration than predicted by the model. This shows that there are effects that are not adequately taken into account, such as the breakdown of compost, or biofilm, resulting in loss of water holding capacity, formation of new biofilm, and changes in physical structure. However, this model can be used to estimate the amount of water to be added to ensure that biofilm activity is maximized.  相似文献   

9.
A continuous-upflow biofilter packed with sponge iron was constructed for nitrate removal under an anaerobic atmosphere. Microbacterium sp. W5, a nitrate reducing and Fe(II) oxidizing strain, was added to the biofilter as an inoculum. The best results were achieved when NO3 ?-N concentration was 30 mg/L and Fe2+ was 800 mg/L. Nitrite in influent would inhibit nitrate removal and aqueous Fe2+ resulted in encrustation. Fe(II)EDTA would prevent cells from encrustation and the maximum nitrogen removal efficiency was about 90 % with Fe(II)EDTA level of 1100 mg/L. Nitrate reduction followed first-order reaction kinetics. Characteristics of biofilms were analyzed by X-ray fluorescence spectroscopy.  相似文献   

10.
Several strains of methane-oxidizing bacteria were isolated and studied to determine their physiological suitability for removal of methane in coal mine atmospheres. One strain, Methylomonas fodinarum ACM 3268, was selected as the most suitable culture for use in the development of a continuous biofilter to be used as a ventilation air scrubber. The experimental biofilter utilising a biofilm of M. fodinarum was shown to reduce methane levels substantially provided the residence times were sufficiently long. In the range 0.25–1.0% methane in air, commonly experienced in coal mine atmospheres, more than 70% of the methane was removed with a residence time of 15 min, with a 90% reduction at 20 min. Even at a residence time of 5 min approximately 20% of the methane in air was removed. Equal quantities of O2 are consumed during the bacterial oxidation of methane and 1% methane is converted to 0.7% CO2. Scale-up and alternative biofilter packings are likely to reduce the residence times in the biofilter.  相似文献   

11.
Chen H  Liu S  Yang F  Xue Y  Wang T 《Bioresource technology》2009,100(4):1548-1554
The simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process was validated to potentially remove ammonium and COD from wastewater in a single, oxygen-limited, non-woven rotating biological contactor (NRBC) reactor. An ammonium conversion efficiency of 79%, TN removal efficiency of 70% and COD removal efficiency of 94% were obtained with the nitrogen and COD loading rate of 0.69 kgN/m(3)d and 0.34 kg/m(3)d, respectively. Scanning electron microscopy (SEM) observation and fluorescence in situ hybridizations (FISH) analysis revealed the existence of the dominant groups of bacteria. As a result, the aerobic ammonia-oxidizing bacteria (AOB), with a spot of aerobic heterotrophic bacteria were mainly distributed in the aerobic outer part of the biofilm. However, ANAMMOX bacteria with denitrifying bacteria were present and active in the anaerobic inner part of the SNAD biofilm. These bacteria were found to exist in a dynamic equilibrium to achieve simultaneous nitrogen and COD removal in NRBC system.  相似文献   

12.
The nutrient removal performance of a membrane bioreactor (MBR) plant treating the wastewater of 10,000 PE was investigated with dynamic simulations. The average process performance with respect to chemical oxygen demand and total nitrogen were reported to be 97 and 81 %, respectively. The modeling study showed that low dissolved oxygen (DO) levels (0.2–0.3 mgO2/L) due to limited aeration capacity within aeration tank that provided additional total nitrogen removal of 15–20 mgN/L. Simultaneous nitrification and denitrification process was found to be the reason of performance increase. However, low DO levels <0.3 mgO2/L in the aeration tank triggered the proliferation of filamentous microorganisms within one month as a side effect. In this respect, the morphotypes of Type 0092 and Nocardia (Gordonia) amarae were found to be excessively abundant in the MBR system. Overflow of foam layer covering the tanks was frequently reported during bulking period. A hypochloride dosing of 4.5 gCL/kgMLSS/day was applied to get over filamentous bulking problem as a short term action.  相似文献   

13.
To establish an economical and environmentally friendly technology for ethylene removal from horticultural facilities and industrial point sources, a bench-scale natural zeolite biofiltration system was developed in this study. The system was evaluated for its performance in removing ethylene from an artificially contaminated air stream and characterized for its bacterial diversity under varied ethylene concentrations, and in different spatial stages of the filter. The biofilter enabled to approximately 100% remove ethylene at loading rates of 0.26-3.76 g m−3 h−1 when operated with inoculum containing enriched ethylene-degrading bacteria. The bacterial diversity and abundance varied with the height of the biofilter. Moreover, the occurrence and predominance of specific bacterial species varied with the concentrations of ethylene introduced into the biofilter, as observed by PCR-DGGE methods. Phylogenetic analysis indicated that the biofilter system supported a diverse community of ethylene-degrading bacteria, with high similarity to species in the classes Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria.  相似文献   

14.
15.
Volatile organic compounds, namely, toluene, trichloroethylene, styrene, etc., disposed off by electronics and polymer industries, are very harmful. The treatment of VOC laden air through biochemical route is one of the potential options for reduction of their concentration in parts per million or parts per billion level. Under the present investigation, a 0.05-m diameter and 0.58-m high trickle bed biofilter has been studied for the removal of VOCs namely toluene and trichloroethylene from a simulated air–VOC mixture using pure strain of Pseudomonas putida (NCIM2650) in immobilized form. Inlet concentrations of VOCs have been varied in two ranges, the lower being 0.20–2.00 g/m3 and higher being 10–20 g/m3, respectively. The Monod type rate kinetics of removal of VOCs has been determined. A three-phase deterministic mathematical model has been developed taking the simultaneous reaction kinetics and interphase (gas to liquid to biofilm) mass transfer rate of VOCs into consideration. Experimentally determined kinetic parameters and mass transfer coefficients calculated using standard correlations have been used. Concentrations have been simulated for all the three phases. Simulated results based on the model have been compared with the experimental ones for both gas and liquid phases satisfactorily. The mathematical model validated through the successful comparison with experimental data may be utilized for the prediction of performance of biofilters undergoing removal of different VOCs in any further investigation and may be utilized for the scale-up of the system to industrial scale.  相似文献   

16.
Microbiological and kinetic aspects of a biofilter inoculated with a consortium of five bacteria and two yeast adapted to remove toluene vapors were investigated. Initially the toluene sorption isotherm on peat and the effect of different environmental conditions on the toluene consumption rates of this consortium were measured. The fast start-up of the biofilter and the decay in the elimination capacity (EC) were reproduced using microcosm assays with toluene successive additions. Nutrient limitation and a large degree of heterogeneity were also detected. EC values, extrapolated from microcosms, were higher than biofilter EC when it was operating close to 100% efficiency but tended to relate better as the biofilter EC diminished. In studies on the microbial evolution in the biofilter, an increase in the cell count and variation in the ecology of the consortium were noted. Bacterial counts up to 10 x 10(11) cfu/gdry peat were found in 88 days, which corresponds to about a 10(4) increase from inoculum. Observations with SEM showed a nonuniform biofilm development on the support and the presence of an extracellular material. The results obtained in this work demonstrated that activity measurement in microcosms concomitant to the biofilter operation could be an important tool for understanding, predicting and improving the biofiltration performance. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

17.
The removal of hydrophobic pollutants in biofilters is often limited by gas liquid mass transfer to the biotic aqueous phase where biodegradation occurs. It has been proposed that the use of fungi may improve their removal efficiency. To confirm this, the uptake of hexane vapors was investigated in 2.6-L perlite-packed biofilters, inoculated with a mixed culture containing bacteria and fungi, which were operated under neutral or acid conditions. For a hexane inlet load of around 140 g.m-3.h-1, elimination capacities (EC) of 60 and 100 g.m-3.h-1 were respectively reached with the neutral and acid systems. Increasing the inlet hexane load showed that the maximum EC obtained in the acid biofilter (150 g.m-3.h-1) was twice greater than in the neutral filter. The addition of bacterial inhibitors had no significant effect on EC in the acid system. The biomass in the acid biofilter was 187 mg.g-1 (dry perlite) without an important pressure drop (26.5 mm of water.m-1reactor). The greater efficiency obtained with the acid biofilter can be related to the hydrophobic aerial hyphae which are in direct contact with the gas and can absorb the hydrophobic compounds faster than the flat bacterial biofilms. Two fungi were isolated from the acid biofilter and were identified as Cladosporium and Fusarium spp. Hexane EC of 40 g.m-3.h-1 for Cladosporium sp. and 50 g.m-3.h-1 for Fusarium sp. were obtained in short time experiments in small biofilters (0.230 L). A biomass content around 30 mg.g-1 (dry perlite) showed the potential for hexane biofiltration of the strains.  相似文献   

18.
Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom-waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.  相似文献   

19.
20.
Applied Microbiology and Biotechnology - The extraction and quantitative analysis of extracellular polymeric substances (EPS) have been frequently reported in studies of activated sludge. However,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号