首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Saccharomyces cerevisiae SUN family gene products, namely Sim1p, Uth1p, Nca3p and Sun4p, show a high degree of homology among themselves and are closely related to beta-glucosidase of Candida wickerhamii; however, these proteins do not bear such an activity. Dithiothreitol-treatment of intact cells induces the release of Uth1p, Sun4p and Sim1p from the cell wall. These highly glycosylated proteins are thus non-covalently bound to the cell wall. Two of them, Uth1p and Sun4p, have also been found in mitochondria. Sub-localization experiments show that Uth1p is inserted in the outer mitochondrial membrane and that Sun4p is preferentially a matrix protein. The physiological significance of this double localization is discussed in relation to the roles of these proteins in different cellular processes, namely mitochondrial biogenesis and cell septation.  相似文献   

3.
Mitochondria contribute significantly to the cellular production of ROS. The deleterious effects of increased ROS levels have been implicated in a wide variety of pathological reactions. Apart from a direct detoxification of ROS molecules, protein quality control mechanisms are thought to protect protein functions in the presence of elevated ROS levels. The reactivities of molecular chaperones and proteases remove damaged polypeptides, maintaining enzyme activities, thereby contributing to cellular survival both under normal and stress conditions. We characterized the impact of oxidative stress on mitochondrial protein homeostasis by performing a proteomic analysis of isolated yeast mitochondria, determining the changes in protein abundance after ROS treatments. We identified a set of mitochondrial proteins as substrates of ROS‐dependent proteolysis. Enzymes containing oxidation‐sensitive prosthetic groups like iron/sulfur clusters represented major targets of stress‐dependent degradation. We found that several proteins involved in ROS detoxification were also affected. We identified the ATP‐dependent protease Pim1/LON as a major factor in the degradation of ROS‐modified soluble polypeptides localized in the matrix compartment. As Pim1/LON expression was induced significantly under ROS treatment, we propose that this protease system performs a crucial protective function under oxidative stress conditions.  相似文献   

4.
In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.  相似文献   

5.
Boron is toxic to living organisms when present in excess. Saccharomyces cerevisiae Bor1p is a plasma membrane protein that decreases the intracellular concentration of boron and confers boron tolerance in yeasts. We investigated the detailed characteristics of boron transport by Bor1p and its roles in boron tolerance. Boron transport assays showed that the bor1 deletion mutant (bor1Delta) accumulates higher intracellular concentrations of boron and has a lower rate of boron export. The bor1Delta showed greater susceptibility to high concentrations of boron than the wild-type strain, and the growth rates of both strains were negatively correlated with the intracellular concentrations of boron. With normal to toxic levels of external boron, green fluorescent protein (GFP)-tagged Bor1p localized to the plasma membrane irrespective of the concentration of boron in the medium. Taken together, these results establish Bor1p as a plasma membrane boron exporter and a key determinant of boron tolerance.  相似文献   

6.
The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200–400 kDa that co-immunopurify with Cox6p. Pulse-labeling analysis disclosed a time-dependent reduction of radiolabeled Atp9p in the complexes and an increase of Atp9p in the ring form of wild type yeast and of mss51, pet111, and pet494 mutants lacking Cox1p, Cox2p, and Cox3p, respectively. Ring formation was not significantly different from wild type in an mss51 or atp10 mutant. The atp10 mutation blocks the interaction of the Atp9p ring with other modules of the ATP synthase. In contrast, ring formation was reduced in a cox6 mutant, consistent with a role of Cox6p in oligomerization of Atp9p. Cox6p involvement in ATP synthase assembly is also supported by studies showing that ring formation in cells adapting from fermentative to aerobic growth was less efficient in mitochondria of the cox6 mutant than the parental respiratory-competent strain or a cox4 mutant. We speculate that the constitutive and Cox6p-independent rate of Atp9p oligomerization may be sufficient to produce the level of ATP synthase needed for maintaining a membrane potential but limiting for optimal oxidative phosphorylation.  相似文献   

7.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

8.
The inner membrane protease (IMP) cleaves intra-organelle sorting peptides from precursor proteins in mitochondria of the yeast Saccharomyces cerevisiae. An unusual feature of the IMP is the presence of two catalytic subunits, Imp1p and Imp2p, which recognize distinct substrate sets even though both enzymes belong to the same protease family. This nonoverlapping substrate specificity was hypothesized to result from the recognition of distinct residues at the P′1 position (also termed +1 position) in the protease substrates. Here, we constructed an extensive series of mutations to obtain a profile of the critical cleavage site residues in IMP substrates and conclude that Imp1p, and not Imp2p, recognizes specific P′1 residues. In addition to its specificity for P′1 residues, Imp1p also shows substrate specificity for the P3 (−3) position. In contrast, Imp2p recognizes the P1 (−1) position and the P3 position. Based on this new understanding of IMP substrate specificity, we conducted a survey for candidate IMP substrates in mammalian mitochondria and found consensus Imp2p cleavage sites in mammalian precursors to cytochrome c1 and glycerol-3-phosphate (G-3-P) dehydrogenase. Presence of a putative Imp2p cleavage site in G-3-P dehydrogenase was surprising, as its yeast ortholog contains an Imp1p cleavage site. To address this issue experimentally, we performed the first co-expression of mammalian IMP with proposed mammalian IMP precursors in yeast and show that murine precursors to cytochrome c1 and G-3-P dehydrogenase are cleaved by murine Imp2p. These results suggest, surprisingly, G-3-P dehydrogenase has switched from Imp1p in yeast to Imp2p in mammals.  相似文献   

9.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

10.
    
The Gos1 protein (Golgi SNAP receptor complex member 1) is involved in the SNARE complex, which is the core machinery that drives membrane fusion between cargo‐carrying vesicles and their target membranes in the secretory and endocytic pathways in yeast. Truncated versions of the Gos1 protein from Saccharomyces cerevisiae were cloned, expressed, purified and crystallized. The crystal belonged to space group P212121, with unit‐cell parameters a = 39.67, b = 43.58, c = 81.94 Å, α = β = γ = 90°. An X‐ray diffraction data set was collected at 100 K to 1.63 Å resolution. Matthews coefficient (VM) calculations suggest that one molecule is present in the asymmetric unit, corresponding to a solvent content of ∼55%.  相似文献   

11.
    
Eukaryotic ribosome synthesis requires a vast number of transiently associated factors. Mpp10, Imp3 and Imp4 form a protein complex in the 90S pre‐ribosomal particle that conducts early processing of 18S rRNA. Here, a short fragment of Mpp10 was identified to associate with and increase the solubility of Imp3. An Imp3–Mpp10 complex was co‐expressed, co‐purified and co‐crystallized. Preliminary X‐ray diffraction analysis revealed that the crystal diffracted to 2.1 Å resolution and belonged to space group P212121, with unit‐cell parameters a = 51.6, b = 86.9, c = 88.7 Å.  相似文献   

12.
Gal1p carries out two functions in the galactose pathway of yeast. It activates Gal4p by interacting with Gal80p – a function that can also served by Gal3p – and it catalyzes the formation of galactose-1-phosphate. Recently, we and others have presented biochemical evidence for complex formation between Gal1p and Gal80p. Here, we extend these data and present genetic evidence for an interaction between Gal1p and Gal80p in vivo, using a two-hybrid assay. Interaction between Gal1p and Gal80p depends on the presence of galactose, but not on the catalytic activity of Gal1p. A new class of Kluyveromyces lactis mutants was isolated, designated Klgal1-m, which have lost the derepressing activity but retain galactokinase activity, indicating that the two Gal1p activities are functionally independent. The KlGal1-m proteins are defective in their ability to interact with Gal80p in a two-hybrid assay. The locations of gal1-m mutations identify putative interaction sites in Gal1p and Gal80p. A dominant mutation, KlGAL1-d, leads to a high level of constitutive expression of genes of the galactose pathway. The behavior of chimeric proteins consisting of Gal3p and KlGal1p sequences indicates that both the N-terminal and C-terminal halves of KlGal1p are involved in specific interaction with KlGal80p. Received: 12 November 1998 / Accepted: 18 December 1998  相似文献   

13.
K+ is one of the cations (besides protons) whose transport across the plasma membrane is believed to contribute to the maintenance of membrane potential. To ensure K+ transport, Saccharomyces cerevisiae cells possess several types of active and passive transporters mediating the K+ influx and efflux, respectively. A diS-C3(3) assay was used to compare the contributions of various potassium transporters to the membrane potential changes of S. cerevisiae cells in the exponential growth phase. Altogether, the contributions of six K+ transporters to the maintenance of a stable membrane potential were tested. As confirmed by the observed hyperpolarization of trk1 trk2 deletion strains, the diS-C3(3) assay is a suitable method for comparative studies of the membrane potential of yeast strains differing in the presence/absence of one or more cation transporters. We have shown that the presence of the Tok1 channel strongly influences membrane potential: deletion of the TOK1 gene results in significant plasma membrane depolarization, whereas strains overexpressing the TOK1 gene are hyperpolarized. We have also proved that plasma membrane potential is not the only parameter determining the hygromycin B sensitivity of yeast cells, and that the role of intracellular transporters in protecting against its toxic effects must also be considered.  相似文献   

14.
Abstract Independently discovered mutations which alter cyclic-AMP dependent protein kinase activity in Saccharomyces cerevisiae are analysed in relation to trehalose and glycogen storage. The defective trehalose and glycogen accumulation in strains which bear the glc1 mutation results from abnormal activation of trehalase by a protein kinase which has partially lost its cAMP dependence. Cells bearing the bcy1 mutation produce an altered protein kinase due to extremely low levels of the cAMP-binding protein. This altered kinase activates trehalase, resulting in low trehalose contents in these cells. In cell-free extracts of control strains (S288C and 7Q-2D), which produce normal levels of glycogen and trehalose, the enzyme trehalase is mainly found in an inactive, cryptic form. Each of the haploid strains containing one of the mutant genes (glc1, glc4-1 and bcy1) is defective in both trehalose and glycogen accumulation and exhibits low activation ratios of trehalase by protein kinase. Genetic complementation experiments clearly establish that the bcy1 mutation involves a different gene to that altered by the glc1 mutation, since the resulting diploid behaved normally. Strain AM9-10D, previously classified as wild-type (normal for bcy1 ), is defective in the accumulation of trehalose and glycogen and exhibits almost all trehalose in the active form.  相似文献   

15.
16.
17.
The Saccharomyces cerevisiae crv mutants (crv1, 2, 3 and 4) exhibit phenotypes, such as calcium resistance and vanadate sensitivity, which are apparently similar to those of calcineurin-deficient mutants. We have cloned and characterized the CRV4 gene that complements all the phenotypes of the crv4 mutant. DNA sequencing revealed that CRV4 is identical to the previously cloned gene TTP1, which encodes a type II membrane protein of unknown function. Deletion of CRV4/TTP1 causes no obvious phenotype except for Ca2+ resistance and vanadate sensitivity, but is synthetically lethal in combination with a deletion of MPK1, in a manner which is suppressible by the addition of an osmotic stabilizer. In medium containing sorbitol as an osmotic stabilizer, the cnb1 mpk1 ttp1 triple mutant exhibits a more severe growth defect than does any of the double mutants cnb1 ttp1, cnb1 mpk1 or mpk1 ttp1. A high Ca2+ concentration (50 mM) or a constitutively active form of calcineurin partially suppresses the growth defect of the mpk1 ttp1 double mutant. These results indicate that Ttp1 participates in a cellular event essential for growth and morphogenesis, in parallel with the pathways involving Mpk1 MAP kinase and calcineurin. Received: 4 June 1997 / Accepted: 14 July 1997  相似文献   

18.
Abstract Protein phosphorylation is an important regulatory phenomenon in yeasts just as in other eukaryotic cells and controls a wide variety of cellular processes. The importance of protein phosphatases as well as protein kinases as key elements in such control is becoming increasingly clear. Over the past four years since the first yeast protein phosphatase gene was isolated, many more such genes have been described and the number of genes encoding protein phosphatase catalytic subunits in Saccharomyces cerevisiae has comfortably entered double figures. Given the genetic approaches available, yeasts offer powerful systems for addressing the cellular roles of these enzymes. This review summarises the results of genetic studies aimed at determining the functions of protein serine/threoninc phosphatases in yeast.  相似文献   

19.
  总被引:1,自引:0,他引:1  
In this paper, specific PHO13 alkaline phosphatase from Saccharomyces cerevisiae was demonstrated to possess phosphoprotein phosphatase activity on the phosphoseryl proteins histone II-A and casein. The enzyme is a monomeric protein with molecular mass of 60 kDa and hydrolyzes p-nitrophenyl phosphate with maximal activity at pH 8.2 with strong dependence on Mg2+ ions and an apparent Km of 3.6×10−5 M. No other substrates tested except phosphorylated histone II-A and casein were hydrolyzed at any significant rate. These data suggest that the physiological role of the p-nitrophenyl phosphate-specific phosphatase may involve participation in reversible protein phosphorylation.  相似文献   

20.
Abstract Fractions of the glucan synthesized in vitro by glucan synthase preparations obtained by mechanical breakage of whole cells of Sacchromyces cerevisiae and Candida albicans were solubilized by sodium dodecyl sulphate (SDS). Part of this material migrated in denaturing electrophoresis at the level of a Coomassie Blue-stained area. In addition, it was solubilized by both an exoglucanase and papain. These results suggest that some yeast glucan is built, associated with a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号