首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using a photoaffinity ligand, cell extracts from transformed macrophages that were established by infection with temperature-sensitive mutants (tsA640) of simian virus 40 (SV40) were examined for cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins. At the nonpermissive temperature for SV40 large T antigen, 39.0 degrees C, no significant cAMP-binding proteins could be detected, such as primary mouse macrophages. At the permissive temperature of 33.0 degrees C, cAMP-binding proteins appeared later than SV40 T antigen expression and cellular DNA synthesis. The profile of cAMP-binding proteins was similar to that of resting, but not proliferating, mouse clonal fibroblasts (BALB/c 3T3). These and previous results suggest that SV40 T antigen influences the expression of cAMP-binding proteins in tsA640-transformed macrophages; the large/small T antigen converts the profile of cAMP-binding proteins from macrophage to fibroblastic cells.  相似文献   

2.
Mouse macrophages transformed by a temperature-sensitive mutant (tsA640) of simian virus 40 (SV40) were examined by immunofluorescence microscopy for fibronectin expression and actin distribution. Resting cultures of tsA640 transformants incubated at a temperature nonpermissive for SV40 large T antigen (39.0 degrees C) exhibited phagocytic activity and did not exhibit cellular fibronectin and actin cables, like primary cultures of resident macrophages. When the resting cultures were sparsely seeded and shifted down to the permissive temperature of 33.0 degrees C, expression of large T antigen in the nucleus, expression of fibronectin in the cytoplasm, and cellular entry into S phase occurred in that temporal order, followed by actin cable formation, cellular proliferation, and diminishment of phagocytic activity. The expression of T antigen and fibronectin was sensitive to actinomycin D and cycloheximide. The expression of fibronectin was insensitive to inhibitors of DNA synthesis, whereas the expression of actin cables was sensitive. These results suggest that SV40 T antigen leads macrophages to express fibronectin and actin cables, as well as resumption of cell proliferation, and that entry into S phase is not required for fibronectin expression but may be required for actin cable formation.  相似文献   

3.
It was shown previously that mouse bone marrow cells transformed by simian virus 40 (SV40) show a reversible cell density-dependent phenotypic transition between the nonmacrophage (rapidly growing) and the macrophage (stationary) states; cells in low-density cultures are in the growing phase, express SV40 T antigen strongly as revealed by immunofluorescence, and lose typical macrophage properties such as immune phagocytosis; whereas cells in high-density cultures are in the stationary (nongrowing) phase, express SV40 T antigen weakly, and recover their macrophage properties (Takayama, 1980). In the hope of clarifying the relationship between T antigen, cell growth, and macrophage-specific cellular function, we examined the behavior at 33 and 39 degrees C of mouse bone marrow cells transformed by an SV40 gene A mutant (tsA640) whose mutation renders the molecular weight of 90K (large) T antigen temperature sensitive. The results presented in this paper suggest that functional large T antigen is required for cells in the stationary phase to initiate multiplication when transferred at lower density and is not necessary for a majority of them to maintain the nongrowing state (viability) at both high and lower cell densities, whereas it is required for cells in the growing phase to keep multiplying without losing their viability. The results also suggest that the functional large T antigen does not play a direct role in maintaining the cells as either phagocytic or nonphagocytic. It is also suggested that the physiological or tsA mutation-mediated arrest of growth may or may not be accompanied by induction and/or maintenance of cellular phagocytic activity depending on the culture state.  相似文献   

4.
Primary rat embryo cells were transformed by a tsA mutant (tsA640) of simian virus 40 (SV40). Proliferation of all four independent diploid transformants was suppressed at a nonpermissive temperature (40.3 degrees C), being accompanied by a marked increase in the fraction of cells with a 4N DNA content (a 4N peak in the flow cytofluorogram). However, in this case, the fraction of cells with a 2N DNA content (a 2N peak in the flow cytofluorogram) was preserved. Both effects (suppression of proliferation and increase in the 4N peak) diminished when transformed cells were superinfected with wild-type SV40. The increased 4N peak was preserved, albeit not completely, for at least 24 hours, when cells were further incubated in the presence of hydroxyurea at the nonpermissive temperature. On the other hand, the preserved 2N peak all but disappeared within 24 hours, when cells were further incubated in the presence of colcemid at the nonpermissive temperature. These results suggest that the thermolabile large T antigen of SV40 directly or indirectly induces an accumulation of cells with a 4N DNA content, at the nonpermissive temperature, by prolonging the G2 (and/or late S) period.  相似文献   

5.
6.
The levels of simian virus 40 (SV40) large T antigen in a tsA-transformed mouse macrophage line at the permissive (33 degrees C) and the nonpermissive (39 degrees C) temperature were examined by immunofluorescence, sodium dodecylsulfate-polyacrylamide gel electrophoresis, complement fixation, and enzyme-linked immunosorbent assay. When the cells were confluent and rested at 33 degrees C, and then were shifted to 39 degrees C, the amount of large T antigen per cell decreased, and most cells survived and remained phagocytic. When the cells were proliferating at 33 degrees C, and then were shifted to 39 degrees C, the cells died with only a small reduction in the amount of large T antigen. Therefore, the physiological state of the cells may determine the survival of cells by affecting the level of large T antigen after exposure to 39 degrees. The confluent cells may be rested with a concomitant decrease of large T antigen. The proliferating cells may not survive in the presence of a relatively high level of functionally defective large T antigen at 39 degrees C.  相似文献   

7.
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.  相似文献   

8.
The simian virus 40 (SV40) mutant tsA1499 contains an 81-base-pair deletion in the region of A gene encoding the C-terminal portion of the large T antigen. This mutant is particularly interesting, since it is a temperature-sensitive mutant that is apparently able to separate the lytic growth and transforming functions of the SV40 large T antigen at 38.5 degrees C. We report the isolation of a tsA1499 revertant (tsA1499-Rev) which is no longer temperature sensitive for lytic growth but still contains the 81-base-pair deletion of tsA1499. Marker rescue experiments with tsA1499-Rev or wild-type strain 830 (wt830) DNAs revealed that the original tsA1499 mutant contained a second mutation within the HindIII-Fnu4HI restriction fragment between 0.425 and 0.484 map units. Sequencing of this DNA fragment from the tsA1499, tsA1499-Rev, and wt830 viruses revealed that tsA1499 contained a single-base transversion (C to G) at 0.455 map units (nucleotide 4261). This transversion resulted in the creation of a new RsaI cleavage site in the tsA1499 DNA and predicts an arginine-to-threonine substitution at amino acid position 186 in the mutant large T antigen. The DNA sequence of the tsA1499-Rev HindIII-Fnu4HI fragment was identical to that of wt830. To determine whether tsA1499 was temperature sensitive for lytic growth solely as a result of the newly discovered point mutation or because of a combination of the point and deletion mutations, a series of viruses were constructed which contained the point mutation, the deletion mutation, both mutations, or neither. This was done by ligating the PstI A and B DNA fragments from either tsA1499 or wt830 and transfecting the ligated DNA into BSC-1H monkey kidney cells. This experiment revealed that all viruses containing the point mutation (the tsA1499 PstI A DNA fragment) were temperature sensitive for lytic growth, regardless of the presence of the 81-base-pair deletion (the tsA1499 PstI B DNA fragment). This newly discovered point mutation, at nucleotide 4261, is therefore unique, since to our knowledge it is the first tsA mutation to be described in the 0.455-map-unit region of the SV40 genome. We then tested the effect of this unique mutation on the ability of the SV40 virus to transform cultured rat cells to anchorage independence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
To identify molecular differences between simian virus 40 (SV40) tsA58 mutant large tumor antigen (large T) in cells of tsA58 N-type transformants [FR(tsA58)A cells], which revert to the normal phenotype after the cells are shifted to the nonpermissive growth temperature, and mutant large T in tsA58 A-type transformants [FR(tsA58)57 cells], which maintain their transformed phenotype after the temperature shift, we asked whether the biological activity of these mutant large T antigens at the nonpermissive growth temperature might correlate with phosphorylation at specific sites. At the permissive growth temperature, the phosphorylation patterns of the mutant large T proteins in FR(tsA58)A (N-type) cells and in FR(tsA58)57 (A-type) cells were largely indistinguishable from that of wild-type large T in FR(wt648) cells. After a shift to the nonpermissive growth temperature, no significant changes in the phosphorylation patterns of wild-type large T in FR(wt648) or of mutant large T in FR(tsA58)57 (A-type) cells were observed. In contrast, the phosphorylation pattern of mutant large T in FR(tsA58)A (N-type) cells changed in a characteristic manner, leading to an apparent underphosphorylation at specific sites. Phosphorylation of the cellular protein p53 was analyzed in parallel. Characteristic differences in the phosphorylation pattern of p53 were observed when cells of N-type and A-type transformants were kept at 39 degrees C as opposed to 32 degrees C. However, these differences did not relate to the different phenotypes of FR(tsA58)A (N-type) and FR(tsA58)57 (A-type) cells at the nonpermissive growth temperature. Our results, therefore, suggest that phosphorylation of large T at specific sites correlates with the transforming activity of tsA mutant large T in SV40 N-type and A-type transformants. This conclusion was substantiated by demonstrating that the biological properties as well as the phosphorylation patterns of SV40 tsA28 mutant large T in cells of SV40 tsA28 N-type and A-type transformants were similar to those in FR(tsA58)A (N-type) and in FR(tsA58)57 (A-type) cells, respectively. The phenotype-specific phosphorylation of tsA mutant large T in tsA A-type transformants probably is a cellular process induced during establishment of SV40 tsA A-type transformants, since tsA28 A-type transformant cells could be obtained by a large-T-dependent in vitro progression of cells of the tsA28 N-type transformant tsA28.3 (M. Osborn and K. Weber, J. Virol. 15:636-644, 1975).  相似文献   

10.
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.  相似文献   

11.
Macrophage membrane fluidity was investigated with respect to cellular phagocytic activity through the use of fatty acid spin labels. Spin-labeled fatty acid derivatives were incorporated into intact mouse peritoneal macrophages by exchange from bovine serum albumin. The electron spin resonance (ESR) spectra of the spin-labeled fatty acids in the macrophages showed a pronounced temperature dependence and a decrease in the hyperfine splittings (2 T11) of the spectra as the nitroxide radical was moved away from the polar head group of the fatty acid derivatives. Spin-labeled macrophages underwent a time- and temperature-dependent decay, which was inhibited by preincubating the cells with mercuric chloride, heating at 56 degrees C, or by fixing them with 0.25% glutaraldehyde. No correlation between the phagocytic activity of macrophages and membrane freedom of motion could be demonstrated. Treatment of macrophages with anti-macrophage serum or extended in vitro cultivation inhibited cellular phagocytic activity but exerted no effect on the motional freedom of the macrophage membrane. Enrichment of the fatty acid composition of the macrophage membrane with cis- or trans-unsaturated fatty acids had striking effects on cellular phagocytic activity, while no significant changes could be detected in the freedom of motion of incorporated fatty acid spin labels at the degree of specific enrichment achieved here. Thus no correlation between cellular phagocytic activity and lipid motion could be detected.  相似文献   

12.
Mouse embryo fibroblasts and 3T3 cells were transformed by wild-type, tsB4, tsA7, tsA58, and tsA209 simian virus 40. Clones of transformants were generated both in soft agar and in liquid medium by focus formation and at both high and relatively low multiplicities of infection. All transformants were assayed for three phenotypes of transformation: (i) the ability to form highly multinucleated cells in cytochalasin B-supplemented medium, i.e., uncontrolled nuclear division; (ii) the capacity to continue DNA synthesis at increasing cell density; and (iii) the ability to form colonies in soft agar. The great majority of mouse embryo fibroblast transformants generated with tsA mutant virus were temperature sensitive for transformation in all three assays, regardless of the input multiplicity or whether they were generated in liquid medium or soft agar. These transformants exhibited a normal or near-normal phenotype at the nonpermissive temperature of 40 degrees C. All but one of the transformants which appeared transformed at both temperatures were in the A209 group. In contrast to mouse embryo fibroblasts, transformants generated with 3T3 cells and tsA virus were often not temperature sensitive, exhibiting the transformation phenotypes at both temperatures. This phenomenon was more often observed when 3T3 transformants were generated in soft agar. These results, along with other published data, suggest that uncontrolled nuclear division and uncontrolled DNA synthesis are a function of the simian virus 40 A gene. Finally, with the 3T3 transformants, there was often discordance in the expression of transformation among the three phenotypes. Some tsA transformants were temperature sensitive in one of two assays but were transformed at both 33 and 40 degrees C in the remaining assay(s). Other transformants exhibited a normal cytochalasin B response at either temperature but were temperature sensitive in the other assays.  相似文献   

13.
Several different forms of progeny viral DNA can be identified in polyoma virus (Py)-infected mouse L-cells. The majority comprise mature form I superhelical DNA and the circular, double-stranded "theta" replicating intermediates in which the progeny DNA strands never exceed the unit genome length of the template. There is formed, in addition, a minority fraction of multimeric, linear, double-stranded Py DNA molecules that sediment heterogeneously at 28 to 35S and greater than 35S. Restriction enzyme analysis of these large Py DNA molecules reveals them to be tandem arrays of multiple unit genome lengths, covalently linked head to tail. It is estimated that the 28 to 35S multimeric DNA has an average size of about 20 megadaltons, made up of 6 to 20 Py genome units. The greater than 35S Py DNA is, of course, larger. Kinetic analysis indicates that formation of the monomeric progeny viral DNA and the 28 to 35S multimeric Py DNA reaches a peak at about 35 to 36 h postinfection. Synthesis of the very large linear molecules of greater than 35S is first detected after this interval and continues thereafter. The de novo synthesis of all of these progeny Py DNA molecules proceeds apparently normally in Py-infected tsA1S9 mouse L-cells incubated at 38.5 degrees C under conditions which restrict normal cellular DNA replication. These findings suggest that the cellular DNA topoisomerase II activity, encoded in the tsA1S9 locus (R. W. Colwill and R. Sheinin, submitted for publication), is not required for de novo formation of any form of Py DNA. However, the total amount made and the rate of synthesis of the large molecular weight Py DNA are affected very late in temperature-inactivated tsA1S9 cells.  相似文献   

14.
The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF). Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.  相似文献   

15.
A 24-hour cultivation of erythroblast islets (El) in presence of erythropoietin (EP) and macrophage colony stimulating factor (MCSF) led to a concentration-dependent enhancement of phagocytic activity (PA) of the El's "central" macrophages. The latter phenomenon was revealed in "mature" El classes only. The PA of "central" macrophages in "proliferating" El appeared to be affected neither by EP, nor by MCSF.  相似文献   

16.
细虫草胞外多糖对小鼠腹腔巨噬细胞免疫功能研究   总被引:1,自引:0,他引:1  
本实验在体外条件下,以人工发酵培养的细虫草胞外多糖OgE、OgE-F1和OgE-F2作用于小鼠腹腔巨噬细胞RAW264.7,通过测定其对巨噬细胞的增殖率、代谢MTT活力、NO分泌和吞噬能力的影响,评价细虫草胞外多糖的免疫调节活性。结果表明,细虫草多糖对巨噬细胞无细胞毒性,且能促进巨噬细胞代谢MTT活力;在0.2mg/mL^1.0mg/mL浓度范围内,多糖呈剂量依赖性的促进巨噬细胞分泌NO水平和吞噬能力。本研究表明,细虫草多糖能有效地增强小鼠巨噬细胞的活性,潜在地可改善小鼠的先天性免疫调节。  相似文献   

17.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

18.
Peritoneal macrophages from LPS hyporesponsive C3H/HeJ mice lose the capacity to bind and phagocytose opsonized sheep erythrocytes (EA) over a 48-hr culture period. This loss in Fc receptor capacity is markedly different from the progressive increase in phagocytic ability exhibited by cultured macrophages derived from LPS-responsive C3H/HeN mice. Since dibutyryl-cyclic adenosine monophosphate (DBcAMP) has previously been reported to modulate membrane receptor expression in lymphocytes and certain macrophage-like cell lines, we examined its effects on EA binding and phagocytosis by C3H/HeJ macrophages. DBcAMP not only reverses the binding defect in C3H/HeJ macrophages but also restores EA phagocytosis to the level of control C3H/HeN cultures. 8-Bromo-cAMP, as well as other agents known to elevate intracellular cAMP (i.e., isoproterenol plus isobutylmethylxanthine or prostaglandin E2) also corrected the phagocytic defect. Since the C3H/HeJ macrophage phagocytic defect can also be reversed by in vitro stimulation with a lymphokine-rich culture supernatant, we examined the effect of this treatment on intracellular cAMP levels. Lymphokine treatment produced a 60% increase in the levels of macrophage intracellular cAMP. These findings suggest that the C3H/HeJ differentiation defect may be secondary to some abnormality in a cAMP dependent pathway.  相似文献   

19.
The oxidative metabolism (chemiluminescence and H2O2 release) and phagocytic activity of mouse peritoneal macrophages during chronic infections induced by Mycobacterium intracellulare and more acute infections due to Listeria monocytogenes were studied. In M. intracellulare infections, macrophage chemiluminescence in response to phorbol myristate acetate (PMA) was greatest at around 2 weeks, with a 1 week lag phase after infection, while the PMA-triggered H2O2 release was markedly enhanced even 1 d after challenge, and remained high thereafter for up to 10 weeks. The pattern of changes in the phagocytic activity of host macrophages in response to latex beads during this infection resembled the pattern seen with macrophage H2O2 release. In the L. monocytogenes infections, the PMA-triggered chemiluminescence of the host macrophages increased 4 d (in a sublethal infection) and 2 d (in a lethal infection) after bacterial challenge, whereas the PMA-triggered H2O2 release was markedly enhanced as early as 1 d after infection and the elevated level persisted until either the bacteria were eliminated or the animals died. The patterns of changes in phagocytic activity of the host macrophages during L. monocytogenes infection at sublethal and lethal doses differed. In the former, phagocytosis was most active in the early phase of infection, with a peak around day 2, followed by a rapid decrease; in the latter, the phagocytic ability increased more slowly, and remained elevated until the animals died. The results suggest that the macrophages induced by M. intracellulare are in a more activated state than are those induced by L. monocytogenes.  相似文献   

20.
The spontaneous regression of erythroleukemia induced by the RFV strain of Friend virus is a macrophage-dependent process. Functional suppression or elimination of the macrophage population in leukemic mice with silica, carrageenan, anti-macrophage serum, or trypan blue inhibited regression. Prior protection of the macrophages with PVNO allowed regression in silica or carrageenan-treated mice. Macrophage phagocytic activity was inhibited in about half the RFV-induced leukemic mice at 25 to 30 days post virus inoculation. Those animals with normal macrophages regressed, whereas whereas those with inhibited macrophages did not. Progressor mice could be induced to regress by inoculation with normal syngeneic macrophages; other cell types were ineffective. The inhibition of macrophage function in leukemic mice was the result of infection of the macrophages by virus. Removal of the infected cells by cytolysis with anti-virus antiserum and C restored the phagocytic activity of the population. Inhibited macrophages were less capable of responding to immobilized antigen-antibody complexes than normal macrophages, suggesting that the loss of function was due to a change in their Fc receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号