首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
Z P Liu  L M Gierasch 《Biopolymers》1992,32(12):1727-1739
The conformational behavior of a model cyclic pentapeptide--cyclo(Gly-L-Pro-D-Phe-Gly-L-Val)--has been explored through the combined use of in vacuo molecular dynamics simulations and a range of nmr experiments (preceding paper). The molecular dynamics analysis suggests that, despite the conformational constraints imposed by formation of the pentapeptide cycle, this pentapeptide undergoes conformational transitions between various hydrogen-bonded conformations, characterized by low energy barriers. An inverse gamma turn with Pro in position i + 1 and a gamma turn with D-Phe in position i + 1 are two alternatives occurring frequently. Like other DLDDL cyclic pentapeptides, cyclo(Gly-Pro-D-Phe-Gly-Val) is also stabilized by an inverse gamma-turn structure with the beta-branched Val residue in position i + 1, and this hydrogen bond is retained in the different conformational families. The gamma-turn around D-Phe3 and the inverse gamma turn around Val5 are consistent with the nmr observations. 3JNH-CH alpha coupling constants of the all-trans forms were calculated from one of the molecular dynamics trajectories and are comparable to nmr experimental data, suggesting that the conformational states visited during the simulation are representative of the conformational distribution in solution. In addition to the equilibrium among various hydrogen-bonded all-trans conformers, the observation in nmr spectra of two sets of resonances for all peptide protons indicated a slow conformational interconversion of the Gly-Pro peptide bond between trans and cis isomers. The activation energy between these two conformers was determined experimentally by magnetization transfer and was calculated by high temperature constrained molecular dynamics simulation. Both methods yield a free energy of activation of ca. 20 kcal/mol. Furthermore, the free energy of activation is dependent on the direction of rotation of the Gly-Pro peptide bond.  相似文献   

2.
Population dynamics of wild type (A1) and the deleterious genes (A2) under social selection have been studied by considering a subdivided population where the i-th subpopulation consists of Ni individuals with relative size ci (= Ni/sigma i Ni, i = 1,2, ..., n). A social selection model is constructed by assuming that the fitness of an individual is determined by its own as well as the parental phenotypes and that the number of migrants (M) from the ith subpopulation is divided equally into other subpopulations including the ith subpopulation itself. It has been shown that the gene frequency change depends on the loss of fitness of an individual due to the trait (gamma), an affected parent in the ith subpopulation (beta i), the probability that the heterozygote develops the trait (h), and the migration rates mi (= M/Ni). For 0 less than h less than or equal to 1, a sufficient condition for protection of the deleterious allele from extinction also depends on all of these parameters. However, when mi much less than 1 for all i, the condition is beta i less than gamma/(1 - gamma) for some i, whereas when mi much greater than h[gamma + beta i(1 - gamma)] for all i it is given by sigma i ci beta i less than -gamma/(1 - gamma). When h = 0, that condition is given by sigma ici beta i less than - gamma/(1 - gamma). Analyses also show that, when the deleterious alleles in a population are rare, the relative fitnesses of A1A1, A1A2, and A2A2 are given approximately by 1, 1-hS, and 1 - S, respectively, where S is the harmonic mean of Si = gamma + beta i(1 - gamma). Thus, under mutation-selection balance, the equilibrium frequency of deleterious alleles in the entire population is given by alpha/hS for 0 less than h less than or equal to 1 and square root alpha/S for h = 0, where alpha is the irreversible mutation rate from A1 to A2 in each generation. Population dynamics of rare deleterious genes under social selection can readily be studied by considering a finite population size.  相似文献   

3.
The adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) induced dissociation of actomyosin subfragment 1 (S1) has been investigated by monitoring the light scattering changes that occur on dissociation. We have shown that ATP gamma S dissociates acto-S1 by a mechanism similar to that of ATP but at a rate 10 times slower. The maximum rate of dissociation is limited by an isomerization of the ternary actin-S1-nucleotide complex, which has a rate of 500 s-1 for ATP gamma S and an estimated rate of 5000 s-1 for ATP (20 degrees C, 0.1 M KCl, pH 7.0). The activation energy for the isomerization is the same for ATP and ATP gamma S, and both show a break in the Arrhenius plot at 5 degrees C. The reaction between acto-S1 and ATP was also followed by the fluorescence of a pyrene group covalently attached to Cys-374. We show that the fluorescence of the pyrene group reports the isomerization step and not actin dissociation. The characterization of this isomerization is discussed in relation to force-generating models of the actomyosin cross-bridge cycle.  相似文献   

4.
Toteva MM  Silvaggi NR  Allen KN  Richard JP 《Biochemistry》2011,50(46):10170-10181
D-Xylose isomerase (XI) and triosephosphate isomerase (TIM) catalyze the aldose-ketose isomerization reactions of D-xylose and d-glyceraldehyde 3-phosphate (DGAP), respectively. D-Glyceraldehyde (DGA) is the triose fragment common to the substrates for XI and TIM. The XI-catalyzed isomerization of DGA to give dihydroxyacetone (DHA) in D(2)O was monitored by (1)H nuclear magnetic resonance spectroscopy, and a k(cat)/K(m) of 0.034 M(-1) s(-1) was determined for this isomerization at pD 7.0. This is similar to the k(cat)/K(m) of 0.017 M(-1) s(-1) for the TIM-catalyzed carbon deprotonation reaction of DGA in D(2)O at pD 7.0 [Amyes, T. L., O'Donoghue, A. C., and Richard, J. P. (2001) J. Am. Chem. Soc. 123, 11325-11326]. The much larger activation barrier for XI-catalyzed isomerization of D-xylose (k(cat)/K(m) = 490 M(-1) s(-1)) versus that for the TIM-catalyzed isomerization of DGAP (k(cat)/K(m) = 9.6 × 10(6) M(-1) s(-1)) is due to (i) the barrier to conversion of cyclic d-xylose to the reactive linear sugar (5.4 kcal/mol) being larger than that for conversion of DGAP hydrate to the free aldehyde (1.7 kcal/mol) and (ii) the intrinsic binding energy [Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219-410] of the terminal ethylene glycol fragment of D-xylose (9.3 kcal/mol) being smaller than that of the phosphodianion group of DGAP (~12 kcal/mol). The XI-catalyzed isomerization of DGA in D(2)O at pD 7.0 gives a 90% yield of [1-(1)H]DHA and a 10% yield of [1-(2)H]DHA, the product of isomerization with incorporation of deuterium from solvent D(2)O. By comparison, the transfer of (3)H from the labeled hexose substrate to solvent is observed only once in every 10(9) turnovers for the XI-catalyzed isomerization of [2-(3)H]glucose in H(2)O [Allen, K. N., Lavie, A., Farber, G. K., Glasfeld, A., Petsko, G. A., and Ringe, D. (1994) Biochemistry 33, 1481-1487]. We propose that truncation of the terminal ethylene glycol fragment of d-xylose to give DGA results in a large decrease in the rate of XI-catalyzed isomerization with hydride transfer compared with that for proton transfer. An ultra-high-resolution (0.97 ?) X-ray crystal structure was determined for the complex obtained by soaking crystals of XI with 50 mM DGA. The triose binds to XI as the unreactive hydrate, but ligand binding induces metal cofactor movement and conformational changes in active site residues similar to those observed for XI·sugar complexes.  相似文献   

5.
Lung tolerance is assessed from LD50 at 180 days after thoracic irradiation, in mice, with d(50) + Be neutrons and 60Co gamma rays. Early intestinal tolerance is assessed from LD50 at 7 days after abdominal irradiation. Additional dose (Dr) to reach LD50 when a single dose Ds is split into 2 equal fractions Di separated by different time intervals "i", is determined (Dr = 2Di - Ds), Dr is larger after gamma than after neutron irradiation, for lung and intestine. After thoracic irradiation with gamma rays, Dr reaches 3.36, 4.38, 5.12 and 5.37 Gy for "i" = 2, 6, 12 and 24 hours respectively; after neutron irradiation, Dr reaches 0.66, 0.9, 1.29, 1.95 and 1.50 Gy for "i" = 1, 2, 4, 12 and 24 hours. Dr is smaller for intestine; after abdominal irradiation with gamma rays, it reaches 1.99, 2.59, 2.74, 3.11, 3.34, 4.44 and 4.56 Gy for "i" = 1, 2, 3.5, 8, 12, 18 and 24 hours; after neutron irradiation, it reaches 0.13, 0.45, 0.42 and 1.33 Gy for "i" = 1.5, 3.5, 5.5 and 24 hours. After gamma irradiation, early repair is complete after 3.5 hours for intestine and needs 12 hours for lung.  相似文献   

6.
The replication of the hepatitis C virus (HCV), an important human pathogen, crucially depends on the proteolytic maturation of a large viral polyprotein precursor. The viral nonstructural protein 3 (NS3) harbors a serine protease domain that plays a pivotal role in this process, being responsible for four out of the five cleavage events that occur in the nonstructural region of the HCV polyprotein. We here show that hexapeptide, tetrapeptide, and tripeptide alpha-ketoacids are potent, slow binding inhibitors of this enzyme. Their mechanism of inhibition involves the rapid formation of a noncovalent collision complex in a diffusion-limited, electrostatically driven association reaction followed by a slow isomerization step resulting in a very tight complex. pH dependence experiments point to the protonated catalytic His 57 as an important determinant for formation of the collision complex. K(i) values of the collision complexes vary between 3 nM and 18.5 microM and largely depend on contacts made by the peptide moiety of the inhibitors. Site-directed mutagenesis indicates that Lys 136 selectively participates in stabilization of the tight complex but not of the collision complex. A significant solvent isotope effect on the isomerization rate constant is suggestive of a chemical step being rate limiting for tight complex formation. The potency of these compounds is dominated by their slow dissociation rate constants, leading to complex half-lives of 11-48 h and overall K(i) values between 10 pM and 67 nM. The rate constants describing the formation and the dissociation of the tight complex are relatively independent of the peptide moiety and appear to predominantly reflect the intrinsic chemical reactivity of the ketoacid function.  相似文献   

7.
We have measured the energetics of ATP and ADP binding to single-headed actomyosin V and VI from the temperature dependence of the rate and equilibrium binding constants. Nucleotide binding to actomyosin V and VI can be modeled as two-step binding mechanisms involving the formation of collision complexes followed by isomerization to states with high nucleotide affinity. Formation of the actomyosin VI-ATP collision complex is much weaker and slower than for actomyosin V. A three-step binding mechanism where actomyosin VI isomerizes between two conformations, one competent to bind ATP and one not, followed by rapid ATP binding best accounts for the data. ADP binds to actomyosin V more tightly than actomyosin VI. At 25 degrees C, the strong ADP-binding equilibria are comparable for actomyosin V and VI, and the different overall ADP affinities arise from differences in the ADP collision complex affinity. The actomyosin-ADP isomerization leading to strong ADP binding is entropy driven at >15 degrees C and occurs with a large, positive change in heat capacity (DeltaC(P) degrees ) for both actomyosin V and VI. Sucrose slows ADP binding and dissociation from actomyosin V and VI but not the overall equilibrium constants for strong ADP binding, indicating that solvent viscosity dampens ADP-dependent kinetic transitions, presumably a tail swing that occurs with ADP binding and release. We favor a mechanism where strong ADP binding increases the dynamics and flexibility of the actomyosin complex. The heat capacity (DeltaC(P) degrees ) and entropy (DeltaS degrees ) changes are greater for actomyosin VI than actomyosin V, suggesting different extents of ADP-induced structural rearrangement.  相似文献   

8.
Electron transfer between horse heart and Candida krusei cytochromes c in the free and phosvitin-bound states was examined by difference spectrum and stopped-flow methods. The difference spectra in the wavelength range of 540-560 nm demonstrated that electrons are exchangeable between the cytochromes c of the two species. The equilibrium constants of the electron transfer reaction for the free and phosvitin-bound forms, estimated from these difference spectra, were close to unity at 20 degrees C in 20 mM Tris-HCl buffer (pH 7.4). The electron transfer rate for free cytochrome c was (2-3).10(4) M-1.s-1 under the same conditions. The transfer rate for the bound form increased with increase in the binding ratio at ratios below half the maximum, and was almost constant at higher ratios up to the maximum. The maximum electron exchange rate was about 2.10(6) M-1.s-1, which is 60-70 times that for the free form at a given concentration of cytochrome c. The activation energy of the reaction for the bound cytochrome c was equal to that for the free form, being about 10 kcal/mol. The dependence of the exchange rate on temperature, cytochrome c concentration and solvent viscosity suggests that enhancement of the electron transfer rate between cytochromes c on binding to phosvitin is due to increase in the collision frequency between cytochromes c concentrated on the phosvitin molecule.  相似文献   

9.
The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ–N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ–N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.  相似文献   

10.
11.
We present simulation results for the effective diffusion coefficients of a sodium ion in a series of model ion channels of different diameters and hydrophobicities, including models of alamethicin, a leucine-serine peptide, and the M2 helix bundle of the nicotinic acetylcholine receptor. The diffusion coefficient, which in the simulations has a value of 0.15(2) A2ps-1 in bulk water, is found to be reduced to as little as 0.02(1) A2ps-1 in the narrower channels, and to about 0.10(5) A2ps-1 in wider channels such as the nicotinic acetylcholine receptor. It is anticipated that this work will be useful in connection with calculations of channel conductivity using such techniques as the Poisson-Nernst-Planck equation, Eyring rate theory, or Brownian dynamics.  相似文献   

12.
A model of hole transfer in DNA molecules has been proposed, which takes into account changes in the reorganization energy and orbital coupling between the neighboring bases during the charge transfer in different molecular sequences. It is shown that the rate of hole transfer by the superexchange and hopping transfer mechanisms is limited by the relaxation of the geometries of nucleobases participating in charge migration and the dynamics of solvent molecules. The rate of charge transfer in the DNA molecule is found to be dependent on the height of the potential barriers between the nucleotide and the molecular sequences. The inclusion of the interchain charge transfer, which is characterized by weak coupling between the nucleotides located in opposite strands, does not affect the general charge transport in DNA. The increase in the number of the parallel components of the hopping mechanism leads to a rise in the charge transfer rate in the double helix.  相似文献   

13.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   

14.
Early repair (Elkind) after d(50) + Be neutron and gamma irradiation is assessed by determining the additional dose Dr necessary to reach a given biological effect when a single fraction Ds is split into 2 equal fractions 2Di separated by a time interval "i". LD50 at 180 days after thoracic irradiation is used as an evaluation of late pulmonary tolerance; LD50 at 5 days after abdominal irradiation is used as an evaluation of early intestinal tolerance. Dr is reduced but still important after neutron irradiation as compared to gamma irradiation. For LD50/180, after fast neutron irradiation Dr reaches 66, 90, 64, 162, 195, 150 cGy for "i" = 1, 2, 3, 5, 4, 12, and 24 hours respectively; after gamma irradiation, Field and Hornsey reported Dr = 390, 530, and 376 cGy for "i" = 2, 6, and 24 hours respectively; after neutron irradiation, they reported Dr = 190 cGy for "i" = 24 hours. For LD50/5, after fast neutron irradiation, Dr = 14, 45, 43, and 133 cGy for "i" = 1,5, 3,5, 5,5 and 24 hours respectively. Early repair is faster after gamma irradiation: Dr reaches a maximum for "i" = 3-4 hours. For neutrons, Dr reaches its maximum at 24 hours for both criteria.  相似文献   

15.
Met-enkephalin is one of the smallest opiate peptides. Yet, its dynamical structure and receptor docking mechanism are still not well understood. The conformational dynamics of this neuron peptide in liquid water are studied here by using all-atom molecular dynamics (MD) and implicit water Langevin dynamics (LD) simulations with AMBER potential functions and the three-site transferable intermolecular potential (TIP3P) model for water. To achieve the same simulation length in physical time, the full MD simulations require 200 times as much CPU time as the implicit water LD simulations. The solvent hydrophobicity and dielectric behavior are treated in the implicit solvent LD simulations by using a macroscopic solvation potential, a single dielectric constant, and atomic friction coefficients computed using the accessible surface area method with the TIP3P model water viscosity as determined here from MD simulations for pure TIP3P water. Both the local and the global dynamics obtained from the implicit solvent LD simulations agree very well with those from the explicit solvent MD simulations. The simulations provide insights into the conformational restrictions that are associated with the bioactivity of the opiate peptide dermorphin for the delta-receptor.  相似文献   

16.
V M Mekler  F T Umarova 《Biofizika》1988,33(4):720-722
Possibility of registration of protein interactions in the membranes was demonstrated. The membrane preparation of Na+, K+ ATPase was used in the investigations. The Na+, K+ ATPase was bound with 4-acetoamido-4'-isothiocyanatostilbene-2,2' disullfonic acid (SITS) and erythrosinisothiocyanate (ERITC). The label/Na+,K+ATPase (M/M) ratio was equal to 1:1 for SITS and changed from 1:1 to 1:5 for ERITC. The cis-trans isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC to SITS. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The rate constant of triplet-triplet energy transfer (kT) from ERITC to cis isomer of SITS, (3 divided by 7) X 10(3) M-1 s-1 was determined at 25 degrees C. The kT value of the energy transfer between loose molecules of erythrosine and SITS in buffer solution equaled to 7 X 10(7) M-1 s-1. This drop of kT in the membrane at 10(4) reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances.  相似文献   

17.
alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.  相似文献   

18.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

19.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

20.
The effects of the transmembrane alpha-helical peptide Ac-K(2)(LA)(12)K(2)-amide [(LA)(12)] on the molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes were investigated using conventional and saturation-recovery EPR observations of phosphatidylcholine spin labels, and the results were compared with our earlier, similar study of Ac-K(2)L(24)K(2)-amide (L(24)) [Subczynski, W. K., Lewis, R. N. A. H., McElhaney, R. N., Hodges, R. S., Hyde, J. S., and Kusumi, A. (1998) Biochemistry 37, 3156-3164]. At peptide-to-POPC ratios between 1/10 and 1/40, both methods (covering a time scale of 100 ps-10 micros) detect the presence of a single homogeneous membrane environment for both peptides, suggesting that these peptides are both well dispersed and that POPC is exchanging rapidly between the boundary and the bulk domains. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane, studied by saturation-recovery EPR, decreases by a factor of about 2 by including 10 mol % (LA)(12) whereas incorporating L(24) has practically no effect. (LA)(12) increases the alkyl chain order of POPC more than L(24). L(24) increases hydrophobicity (decreases the degree of water penetration into the hydrophobic region of the membrane) more than does (LA)(12). We ascribe the much stronger effects of (LA)(12) on membrane order and dynamics to the increased roughness of its hydrophobic surface and also to the increased motional freedom of its leucine side chains. In L(24), the leucine side chains are packed tightly, giving a smooth hydrophobic surface. In (LA)(12), they are separated by the small methyl groups of the alanine side chains, giving them additional motional freedom and the ability to protrude between the phospholipid hydrocarbon chains. The frequency of gauche-trans isomerization of hydrocarbon chains and concentration of vacant pockets (voids) in the lipid bilayer are thus reduced, which decreases oxygen transport. This explanation was confirmed by calculating the orientational order of leucine side chains in (LA)(12) and L(24) from molecular dynamics simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号