共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to sulfate addition to soil 总被引:3,自引:0,他引:3
Sulfate complexation of Cd in nutrient solution has been shown to have little impact on Cd uptake by plants. This study examined the effect of sulfate added to soil on Cd concentrations in soil solution and Cd uptake by Swiss chard (Beta vulgaris L. cv. Fordhook Giant). Swiss chard was grown in soil which was wetted with complete nutrient solution containing equivalent salt concentrations of NaNO3 or Na2SO4. Plant growth was reduced by increasing both NO3 and SO4 concentrations in soil solution, with growth reductions similar for both salts. The Cd concentration in soil solution increased P< 0.05) more consistently with increasing concentrations of SO4 compared to NO3 in soil solution. Solution speciation, calculated with GEOCHEM-PC, showed significant increases of Cd2+ activities with increasing salt rates. Shoot Cd content in 19-day-old Swiss chard plants was marginally but significantly P <0.05) increased with increasing SO4 concentration but no effect was observed with increasing NO3 concentration. These results are compared with earlier work on the marked effect of Cl- salinity on Cd availability in Swiss chard. Possible mechanisms explaining the smaller effect of SO4 compared to Cl on Cd availability are proposed. 相似文献
2.
Influence of environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria 总被引:2,自引:0,他引:2
Zheng-Ji Yi Kai-Xuan Tan Ai-Li Tan Zhen-Xun Yu Shi-Qiang Wang 《International biodeterioration & biodegradation》2007,60(4):258-266
Microbial reduction of soluble uranyl [U (VI)] to insoluble uraninite by sulfate reducing bacteria (SRB) is a promising remediation strategy for uranium-contaminated groundwater. Effects of environmental factors, including pH and coexisting ions, on U (VI) bioreduction processes (UBP) remain unknown. Anaerobic batch experiments were performed to evaluate impact on UBP. Kinetic investigations with varied pH demonstrated that U (VI) was reduced mostly within 48 h. The bioprecipitation yields depended strongly on pH, increasing from 12.9% to 99.4% at pH 2.0 and 6.0, respectively. Sulfate concentration 4000 mg l−1 did not affect UBP; however, sulfate concentration 5000 mg l−1 significantly slowed UBP. Biogenic H2S produced during sulfate reduction was not directly involved in UBP. At 20 mg l−1 Zn or 10 mg l−1 Cu, no UBP inhibition was observed and uraninite was detected in metal sulfide precipitate. However, 25 mg l−1 Zn or 15 mg l−1 Cu stopped UBP completely. Cu toxicity mechanism probably differed from Zn. The ability to reduce U (VI) was lost permanently with exposure to 15 mg l−1 Cu, but not for Zn 25 mg l−1. No uraninite could be detected before nitrate removal, suggesting nitrate strongly inhibited UBP, which may possibly be related to denitrification intermediates controlling the solution redox potential. 相似文献
3.
Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables 总被引:3,自引:0,他引:3
Aerobic anoxygenic phototrophic bacteria (AAP) represent an important fraction of bacterioplankton assemblages in various oceanic regimes. Although their abundance and distribution have been explored recently in diverse oceanic regions, the environmental factors controlling the population structure and diversity of these photoheterotrophic bacteria remain poorly understood. Here, we investigate the horizontal and vertical distributions and the genetic diversity of AAP populations collected in late summer throughout the Mediterranean Sea using pufM-temporal temperature gel gradient electrophoresis (TTGE) and clone library analyses. The TTGE profiles and clone libraries analyzed using multivariate statistical methods demonstrated a horizontal and vertical zonation of AAP assemblages. Physicochemical parameters such as pH, inorganic nitrogen compounds, photosynthetically active radiation, total organic carbon and to a lesser extent particulate organic nitrogen and phosphorus, and biogenic activities (e.g. bacterial production, cell densities), acted in synergy to explain the population changes with depth. About half of the pufM sequences were <94% identical to known sequences. The AAP populations were predominantly (~80%) composed of Gammaproteobacteria, unlike most previously explored marine systems. Our results suggest that genetically distinct ecotypes inhabiting different niches may exist in natural AAP populations of the Mediterranean Sea whose genetic diversity is typical of oligotrophic environments. 相似文献
4.
Triclosan susceptibility and co-metabolism--a comparison for three aerobic pollutant-degrading bacteria 总被引:1,自引:0,他引:1
Kim YM Murugesan K Schmidt S Bokare V Jeon JR Kim EJ Chang YS 《Bioresource technology》2011,102(3):2206-2212
The antimicrobial agent triclosan is an emerging and persistent environmental pollutant. This study evaluated the susceptibility and biodegradation potential of triclosan by three bacterial strains (Sphingomonas wittichii RW1, Burkholderia xenovorans LB400 and Sphingomonas sp. PH-07) that are able to degrade aromatic pollutants (dibenzofuran, biphenyl and diphenyl ether, respectively) with structural similarities to triclosan. These strains showed less susceptibility to triclosan when grown in complex and mineral salts media. Biodegradation experiments revealed that only strain PH-07 was able to catabolize triclosan to intermediates that included hydroxylated compounds (monohydroxy-triclosan, and dihydroxy-triclosan) and the ether bond cleavage products (4-chlorophenol and 2,4-dichlorophenol), indicating that the initial dihydroxylation occurred on both aromatic rings of triclosan. Additional growth inhibition tests demonstrated that the main intermediate, 2,4-dichlorophenol, was less toxic to strain PH-07 than was triclosan. Our results indicate that ether bond cleavage might be the primary mechanism of avoiding triclosan toxicity by this strain. 相似文献
5.
Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard 总被引:3,自引:0,他引:3
In this study, among a collection of Ni resistant bacterial strains isolated from serpentine soil, two plant growth promoting bacteria (PGPB), Ps29C and Bm4C were selected based on their ability to utilize ACC as the sole N source and promote seedling growth in roll towel assay. The Ni resistant PGPB, Ps29C and Bm4C were characterized as Pseudomonas sp. and Bacillus megaterium, respectively, on the basis of their 16s rDNA sequences. Assessment of the parameters of plant growth promotion revealed the intrinsic ability of the strains for the production of IAA, siderophore and solubilization of insoluble phosphate. Further, the plant growth promoting activity of Ps29C and Bm4C on the Indian mustard (Brassica juncea) were assessed with different concentrations of Ni in soil. Inoculation of Ps29C or Bm4C promoted plant growth and protected the plant from Ni toxicity. However, the maximum growth was observed in the plants inoculated with strain Bm4C. Inoculation with Ps29C or Bm4C had little influence on the accumulation of Ni in root and shoot system, but produced a much larger aboveground biomass. The present observations showed that the strains Ps29C and Bm4C protect the plants against the inhibitory effects of nickel, probably due to the production of IAA, siderophore and solubilization of phosphate. The above results provided a new insight into the phytoremediation of Ni contaminated soil. 相似文献
6.
Characterization of 3-chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions 总被引:2,自引:0,他引:2
Krooneman J Sliekers AO Pedro Gomes TM Forney LJ Gottschal JC 《FEMS microbiology ecology》2000,32(1):53-59
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations. 相似文献
7.
Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions 总被引:4,自引:0,他引:4
The impacts of both sulfate (SO4) and calcium (Ca) concentrations in solution on plant uptake of cadmium (Cd) vary according to effects on both sorption of Cd by soil and on uptake by the plant root. This study investigated how complexation of Cd by SO4 affected plant Cd uptake in nutrient solution. Swiss chard (Beta vulgaris L. cv. Fordhook Giant) was grown in nutrient solution with SO4 concentrations varying between 8 mM and 58 m M, with ionic strength maintained constant across treatments using nitrate (NO3). In a separate experiment, solution Ca concentrations was also varied to compensate for SO4 complexation by Ca. Plant growth was unaffected by increasing SO4 concentrations in solution. Despite considerable reductions in free Cd2+ ion activities in solution by increasing SO4 concentrations, plant Cd concentrations were unaffected. Similarly, plant Cd concentrations were unaffected by increasing Ca concentrations in solution to compensate for SO4 complexation of Ca. These data suggest that the CdSO40 complex is taken up by plants with equal efficiency to the free Cd2+ ion. 相似文献
8.
The ability of bacteria to cause rapid uptake of choline sulfate in plants, i.e., effectiveness, was studied using Pseudomonas tolaasii and excised roots of barley (Hordeum vulgare L.). Once effective, bacteria remained so after being killed by treatments which cause little damage to their outer structure. However, effectiveness was destroyed by disruption of the cell wall, protein reagents, a mild heat treatment or removal of Mg2+. Effective bacteria adsorbed choline sulfate. This adsorption had characteristics similar to those of bacterial effectiveness (magnesium requirement, high substrate specificity). These results indicate that a proteinaceous structure on the bacterial surface binds and, somehow, transfers choline sulfate to the plant. 相似文献
9.
Abstract Sulfate uptake by excised roots of barley (Hordeum vulgare L.) was maximal in the presence of about 3x10-3M CaCl2. Kinetic studies contraindicate a stoichiometric binding of calcium to the carrier for sulfate, in contrast to findings of Cuppoletti and Segel (Biochemistry 14: 471–4718, 1975) for the filamentous fungus Penicillium notatum. In barley, calcium affects the Km but not the Vmax for sulfate uptake, presumably by altering the conformation and, thereby, the affinity of the carrier. Calcium also affects the transition site for sulfate uptake. 相似文献
10.
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source. 相似文献
11.
Biological effects of non-ionic surfactants on alkane-oxidizing bacteria were studied by assessing their influence on the uptake of prefluorochrome fluoresceindiacetate (FDA) and its intracellular hydrolysis to fluorescein. Both decreasing and increasing rates of hydrolysis as a consequence of the presence of surfactants were observed. The surfactants influenced the uptake of FDA, but not its intracellular hydrolysis. The effects of the surfactants on the uptake rate depended strongly on the structure and physico-chemical properties of the surfactants. There was no qualitative or significant quantitative difference in surfactant susceptibility between induced (alkane grown) and non-induced bacteria (acetate grown), even though the induced cells possess greater cell surface hydrophobicity. 相似文献
12.
W A Keith R J Smiljanic W A Akers L W Keith 《Applied and environmental microbiology》1979,37(2):345-347
Viable aerobic mesophilic bacteria are not evenly distributed on the skin of the volar forearm. An increase in the size of the area sampled did not result in a proportional increase in the number of the viable aerobic mesophilic bacteria recovered. 相似文献
13.
Viable aerobic mesophilic bacteria are not evenly distributed on the skin of the volar forearm. An increase in the size of the area sampled did not result in a proportional increase in the number of the viable aerobic mesophilic bacteria recovered. 相似文献
14.
Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. 总被引:1,自引:3,他引:1
下载免费PDF全文

When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2. 相似文献
15.
16.
Effects of acetylene on hydrogenases from the sulfate reducing and methanogenic bacteria 总被引:1,自引:0,他引:1
S H He S B Woo D V DerVartanian J Le Gall H D Peck 《Biochemical and biophysical research communications》1989,161(1):127-133
The effect of acetylene on the activity of the three types of hydrogenase from the anaerobic sulfate reducing bacteria has been investigated. The (Fe) hydrogenase is resistant to inhibition by acetylene while the nickel-containing hydrogenases are inhibited by acetylene with the (NiFe) hydrogenase being 10-50 fold more sensitive than the (NiFeSe) hydrogenase. In addition the Ni(III) EPR signal (g approximately 2.3) of the "as isolated" (NiFe) hydrogenase was significantly decreased in intensity upon exposure to acetylene. 相似文献
17.
18.
Effects of environmental variables and soil characteristics on virus survival in soil 总被引:10,自引:0,他引:10
Because of the increasing emphasis placed upon land application as a means of wastewater disposal, it is important to evaluate the influences of different factors upon virus survival in soil. The objective of this study was to measure the effects of various environmental variables on virus persistence. Test samples of soil were placed in vials, and the soil was wetted with suspensions of virus in either distilled water, unchlorinated secondary sewage effluent, or mixtures of effluent and water. The viruses used were coxsackieviruses A9 and B3, echovirus 1, poliovirus 2, rotavirus SA11, and bacteriophages T2 and MS2. The rate of virus inactivation was evaluated statistically with regard to conditions under which the vials were incubated and to the soil characteristics. The factors that were found to influence virus survival were temperature, soil moisture content, presence of aerobic microorganisms, degree of virus adsorption to the soil, soil levels of resin-extractable phosphorus, exchangeable aluminium, and soil pH. Overall, temperature and virus adsorption to soil appeared to be the most important factors affecting virus survival. 相似文献
19.
20.
D Kleiner 《Archives of microbiology》1975,104(2):163-169
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts. 相似文献