首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sites and gene products involved in lambdoid phage DNA packaging.   总被引:5,自引:1,他引:4       下载免费PDF全文
21 is a temperate lambdoid coliphage, and the genes that encode the head proteins of lambda and 21 are descended from a common ancestral bacteriophage. The sequencing of terminase genes 1 and 2 of 21 was completed, along with that of a segment at the right end of 21 DNA that includes the R4 sequence. The R4 sequence, a site that is likely involved in termination of DNA packaging, was found to be very similar to the R4 sequences of lambda and phi 80, suggesting that R4 is a recognition site that is not phage specific. DNA packaging by 21 is dependent on a host protein, integration host factor. A series of mutations in gene 1 (her mutations), which allow integration host factor-independent DNA packaging by 21, were found to be missense changes that affect predicted alpha-helixes in gp1. gp2, the large terminase subunit, is predicted to contain an ATP-binding domain and, perhaps, a second domain important for the cos-cutting activity of terminase. orf1, an open reading frame analogous in position to FI, a lambda gene involved in DNA packaging, shares some sequence identity with FI. orf1 was inactivated with nonsense and insertion mutations; these mutations were found not to affect phage growth. 21 was also not able to complement a lambda FI mutant.  相似文献   

2.
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.  相似文献   

3.
4.
A functional domain of bacteriophage lambda terminase for prohead binding   总被引:7,自引:0,他引:7  
Terminase is a multifunctional protein complex involved in DNA packaging during bacteriophage lambda assembly. Terminase is made of gpNul and gpA, the products of the phage lambda Nu1 and A genes. Early during DNA packaging terminase binds to lambda DNA to form a complex called complex I. Terminase is required for the binding of proheads by complex I to form a DNA: terminase: prohead complex known as complex II. Terminase remains associated with the DNA during encapsidation. The other known role for terminase in packaging is the production of staggered nicks in the DNA thereby generating the cohesive ends. Lambdoid phage 21 has cohesive ends identical to those of lambda. The head genes of lambda and 21 show partial sequence homology and are analogous in structure, function and position. The terminases of lambda and 21 are not interchangeable. At least two actions of terminase are involved in this specificity: (1) DNA binding; (2) prohead binding. The 1 and 2 genes at the left end of the 21 chromosome were identified as coding for the 21 terminase. gp1 and gp2 are analogous to gpNu1 and gpA, respectively. We have isolated a phage, lambda-21 hybrid 33, which is the product of a crossover between lambda and 21 within the terminase genes. Lambda-21 hybrid 33 DNA and terminase have phage 21 packaging specificity, as determined by complementation and helper packaging studies. The terminase of lambda-21 hybrid 33 requires lambda proheads for packaging. We have determined the position at which the crossover between lambda DNA and 21 DNA occurred to produce the hybrid phage. Lambda-21 hybrid 33 carries the phage 21 1 gene and a hybrid phage 2/A gene. Sequencing of lambda-21 hybrid 33 DNA shows that it encodes a protein that is homologous at the carboxy terminus with the 38 amino acids of the carboxy terminus of lambda gpA; the remainder of the protein is homologous to gp2. The results of these studies define a specificity domain for prohead binding at the carboxy terminus of gpA.  相似文献   

5.
Terminase is a protein complex involved in lambda DNA packaging. The subunits of terminase, gpNul and gpA, are the products of genes Nul and A. The actions of terminase include DNA binding, prohead binding and DNA nicking. Phage 21 is a lambdoid phage that also makes a terminase, encoded by genes 1 and 2. The terminases of 21 and lambda are not interchangeable. This specificity involves two actions of terminase; DNA binding and prohead binding. In addition, the subunits of lambda terminase will not form functional multimers with the subunits of 21 terminase. lambda-21 hybrid phages can be produced as a result of recombination. We describe here lambda-21 hybrid phages that have hybrid terminase genes. The packaging specificities of the hybrids and the structure of their genes were compared in order to identify functional domains of terminase. The packaging specificities were determined in vivo by complementation tests and helper packaging experiments. Restriction enzyme site mapping and sequencing located the sites at which recombination occurred to produce the hybrid phages. lambda-21 hybrid 51 carries the lambda A gene, and a hybrid 1/Nul gene. The crossover that produced this phage occurred near the middle of the 1 and Nul genes. The amino-terminal portion of the hybrid protein is homologous to gp1 and the carboxy-terminal portion is homologous to gpNul. It binds to 21 DNA and forms functional multimers with gpA, providing evidence that the amino-terminal portion of gpNul is involved in DNA binding and the carboxy-terminal portion of gpNul is involved in the interaction with gpA. lambda-21 hybrid 54 has a hybrid 2/A gene. The amino terminus of the hybrid protein of lambda-21 hybrid 54 is homologous with gp2. This protein forms functional multimers only with gp1, providing evidence that the amino terminus of gpA is involved in the interaction with gpNul. These studies identify three functional domains of terminase.  相似文献   

6.
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.  相似文献   

7.
Maluf NK  Gaussier H  Bogner E  Feiss M  Catalano CE 《Biochemistry》2006,45(51):15259-15268
Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.  相似文献   

8.
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.  相似文献   

9.
The lambda terminase enzyme binds to the cohesive end sites (cos) of multimeric replicating lambda DNA and introduces staggered nicks to regenerate the 12 bp single-stranded cohesive ends of the mature phage genome. In vitro this endonucleolytic cleavage requires spermidine, magnesium ions, ATP and a host factor. One of the E. coli proteins which can fulfill this latter requirement is Integration Host Factor (IHF). IHF and the gpNu1 subunit of terminase can bind simultaneously to their own specific binding sites at cos. DNase I footprinting experiments suggest that IHF may promote gpNu1 binding. Although no specific gpNu1 binding to the left side of cos can be detected, this DNA segment does play a specific role since a cos fragment that does not include the left side or whose left side is replaced by non-cos sequences, is unable to bind gpNu1 unless either spermidine or IHF is present. Binding studies on the right side of cos using individual or combinations of gpNu1 binding sites I, II and III indicate that binding at sites I and II is not optimal unless site III is present.  相似文献   

10.
Summary DNA terminase is the enzyme that catalyses the cleavage of DNA concatemers into genome-size molecules and packages them into the capsid. The cleavage (DNA maturation) takes place in a specific site in the phage DNA called cos. Either one of two Escherichia coli proteins, integration host factor (IHF) and terminase host factor (THF), is required, in addition to terminase, for maturation of wild-type DNA in vitro. In vivo, at least some cos cleavage is known to occur in mutants that are unable to synthesize active IHF. No THF-defective mutants have yet been isolated. In order to determine if IHF, THF or any other host protein is involved in DNA maturation in vivo, I devised a selection for host mutants that are unable to support cos cleavage. The selection is based on the assumption that DNA terminase will kill cells by cleaving chromosomally located cos sites. I found that DNA terminase will indeed kill cells provided that they contain a chromosomal cos site and provided also that they are defective in the host recA or recB genes. These two genes are required for certain pathways of genetic recombination and repair of damaged DNA, and I suggest that they prevent terminase-induced killing by repairing broken chromosomes. Interstingly, mutation in a related host gene, recD, did not render cells susceptible to terminase killing. recD and recB both encode subunits of exonuclease V, but recD mutants, unlike recB, remain proficient in genetic recombination and repair. I found mutants that survived the lethal effect of terminase in cos-containing E. coli recA at a frequency of about 5×10-5. About 90% of these survivors were defective in terminase synthesis, and the rest were defective in IHF function. This result suggests that in the absence of IHF in vivo cos cleavage decreases to a level that permits repair of the damage, and therefore survival, even in recombination deficient cells. The absence of mutations in any other host gene suggests that IHF is the major accessory factor in DNA maturation in vivo. Alternatively, or in addition, mutations in other accessory factors are lethal.Abbreviations gp gene product: e.g. gpA, product of gene A - () prophage state - [] plasmid-carrier state  相似文献   

11.
Terminase, the DNA packaging enzyme of phage lambda, binds to lambda DNA at a site called cosB, and introduces staggered nicks at an adjacent site, cosN, to generate the cohesive ends of virion lambda DNA molecules. Terminase also is involved in separation of the cohesive ends and in binding the prohead, the empty protein shell into which lambda DNA is packaged. Terminase is a DNA-dependent ATPase, and both subunits, gpNu1 and gpA, have ATPase activity. cosB contains a series of gpNu1 binding sites, R3, R2 and R1; between R3 and R2 is a binding site, I1, for integration host factor (IHF), the Escherichia coli DNA bending protein. In this work, a series of mutations in Nu1 have been isolated as suppressors of cosB mutations. One of the Nu1 mutations is identical to the previously described Nu1ms1/ohm1 mutation predicted to cause the change L40F in the 181 amino acid-long gpNu1. Three other Nu1 missense mutations, the Nu1ms2 (L40I), ms3 (Q97K) and ms4 (A92G) mutations, have been isolated; the relative strengths of suppression of cosB mutations by the Nu1ms mutations are: ms1 > ms2 > ms3 > ms4. The Nu1 missense mutations all affect amino acid residues that lie outside of the putative helix-turn-helix DNA binding motif of gpNu1. The Nu1ms1 and Nu1ms2 mutations alter an amino acid residue (L40) that lies directly between two segments of gpNu1 proposed to be involved in ATP binding and hydrolysis; thus these mutations are likely to alter the gpNu1 ATP-binding site. The Nu1ms3 and Nu1ms4 mutations both affect amino acid residues in the central region of gpNu1 that is predicted to form a hydrophilic alpha-helix. To explain how the Nu1ms mutations suppress cosB defects, models involving alterations of the DNA binding and/or catalytic properties of terminase are considered. The results also indicate that terminase occupancy of a single gpNu1 binding site (R3) is necessary and sufficient for the efficient initiation of DNA packaging; the Nu1ms1, ms2 and ms3 mutations permit IHF-independent plaque formation by a phage lacking R2 and R1.  相似文献   

12.
A Davidson  P Yau  H Murialdo    M Gold 《Journal of bacteriology》1991,173(16):5086-5096
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp.  相似文献   

13.
W. F. Wu  S. Christiansen    M. Feiss 《Genetics》1988,119(3):477-484
The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNul, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between lambda and the related phage 21. lambda and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, lambda and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A lambda-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, lambda-21 hybrid 67, is characterized. lambda-21 hybrid 67 is the result of a crossover between lambda and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosB phi 21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is lambda DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interaction of E. coli integration host factor (IHF) with the cohesive end sites (cos's) of phages lambda and 21 has been studied by the DNAase I footprinting technique. Six potential sites in cos lambda differ from the consensus IHF binding sequence by 1 to 3 base pairs. Of the six, one site, I1, binds IHF strongly. The I1 segment protected by IHF contains two sequences that closely match the IHF consensus binding sequence. Another site, I2, binds IHF moderately well, and three sites: 10', 13 and 14 bind IHF very weakly. The 10 site does not bind IHF under the conditions used here. In phage 21 the DNA segment extending to the right from the cohesive ends, which contains three potential IHF binding sites, was examined. Two sites bind IHF well; I1, the 21 analogue of one of the lambda I1 sites, and I0, a site not analogous to a lambda site. The third 21 site, I2, binds IHF moderately well, as does the analogous I2 site in lambda. The significance of the results for lambda DNA packaging is discussed.  相似文献   

15.
Terminases of double-stranded DNA bacteriophages are required for packaging and generation of terminii in replicated concatemeric DNA molecules. Genetic evidence suggests that these functions in phage T4 are carried out by the products of genes 16 and 17. We cloned these T4 genes into a heat-inducible cI repressor-lambda PL promoter vector system, and overexpressed them in Escherichia coli. We developed an in-vitro DNA packaging system, which, consistent with the genetic data, shows an absolute requirement for the terminase proteins. The overexpressed terminase proteins gp16 and gp17 appear to form a specific complex and an ATP binding site is present in the gp17 molecule. We purified the terminase proteins either as individual gp16 or gp17 proteins, or as a gp16-gp17 complex. The gp16 function of the terminase complex is dispensable for packaging mature DNA, whereas gp17 is essential for packaging DNA under any condition tested. We constructed a defined in-vitro DNA packaging system with the purified terminase proteins, purified proheads and a DNA-free phage completion gene products extract. All the components of this system can be stored at -90 degrees C without loss of packaging activity. The terminase proteins, therefore, may serve as useful reagents for mechanistic studies on DNA packaging, as well as to develop T4 as a packaging-cloning vector.  相似文献   

16.
17.
Temperate coliphage HK022 requires integration host factor (IHF) for lytic growth. The determinant responsible for this requirement was identified as a new gene (roi) located between genes P and Q. This gene encodes a DNA-binding protein (Roi) containing a helix-turn-helix motif. We have shown that Roi binds a site within its own gene that is closely linked to an IHF binding site. By gel retardation experiments, we have found that IHF binding stabilizes the interaction of Roi with its gene. We have isolated three independent phage mutants that are able to grow on an IHF- host. They carry different mutations scattered in the roi gene and specifying single amino-acid changes. The interactions of all three Roi mutant proteins with the Roi binding site differed from that of the wild type. Roi displays strong similarities, in its C-terminal half, to two putative DNA-binding proteins of bacteriophage P1: Ant1 and KilA. The mode of action of the Roi protein and the possibility that IHF is modulating the expression and/or the action of Roi are discussed.  相似文献   

18.
Summary + is able to grow in Escherichia coli cells lacking integration host factor (IHF), producing a burst of approximately 25% that produced in IHF+ cells. In vitro, however, we find that the DNA packaging enzyme terminase is strongly dependent on IHF in both cos cleavage reactions and DNA packaging reactions. The cos59 mutation renders dependent on IHF in vivo. The cos59 mutation is a deletion of 3 base pairs at the XmnI site in the cohesive end site (cos) of . Variants of cos59 that were able to grow in the absence of IHF were isolated and found to carry a mutation, called ms1, in the Nu1 gene, which codes for the small subunit of terminase. The Nu1ms1 mutation results in a change of the 40th amino acid of the Nu1 gene product from leucine to phenylalanine. The Nu1ms1 terminase was independent of IHF in packaging reactions in vitro. The results indicate that the mutation either renders terminase: (1) able to utilize some host protein other than IHF, or (2) totally independent of host factors.  相似文献   

19.
Bacteriophage lambda with mutations in genes that control prohead assembly and other head precursors cannot mature their DNA. In this paper we present evidence that the failure of these phage mutants to mature DNA is a reflection of a mechanism that modulates terminase nicking activity during normal phage development. We have constructed plasmids that contain the lambda-cohesive end site (cos) and the genes that code for DNA terminase, the enzyme that matures DNA by cutting at cos. The DNA terminase genes are under control of a thermosensitive cI repressor. These plasmids lack most of the genes involved in prohead morphogenesis and other head precursors. However, when repression is lifted by destruction of the thermosensitive repressor, the terminase synthesized is able to cut almost 100% of the plasmids. Therefore, these plasmids can mature in the absence of proheads and other head gene products. The plasmids are also able to complement mutants of lambda deficient in terminase and DNA maturation. However, in these complementation experiments, if the phage carry mutations in prohead genes E or B, not only is phage DNA maturation blocked, but the plasmid also fails to mature. These experiments show that, in the absence of proheads, phage lambda produces a trans-acting inhibitor of maturation. The genetic determinant of this inhibitor maps in a region extending from the middle of gene B to the end of gene C. A model is proposed in which the nicking activity of DNA-bound terminase is inhibited by the trans-acting inhibitor. Prohead (and other factors) binding to this complex would release the block to allow DNA cleavage and packaging.  相似文献   

20.
Ortega ME  Catalano CE 《Biochemistry》2006,45(16):5180-5189
Terminase enzymes are common to both prokaryotic and eukaryotic double-stranded DNA viruses and are responsible for packaging viral DNA into the confines of an empty procapsid shell. In all known cases, the holoenzymes are heteroligomers composed of a large subunit that possesses the catalytic activities required for genome packaging and a small subunit that is responsible for specific recognition of viral DNA. In bacteriophage lambda, the DNA recognition protein is gpNu1. The gpNu1 subunit interacts with multiple recognition elements within cos, the packaging initiation site in viral DNA, to site-specifically assemble the packaging machinery. Motor assembly is modulated by the Escherichia coli integration host factor protein (IHF), which binds to a consensus sequence also located within cos. On the basis of a variety of biochemical data and the recently solved NMR structure of the DNA binding domain of gpNu1, we proposed a novel DNA binding mode that predicts significant bending of duplex DNA by gpNu1 (de Beer et al. (2002) Mol. Cell 9, 981-991). We further proposed that gpNu1 and IHF cooperatively bind and bend viral DNA to regulate the assembly of the packaging motor. Here, we characterize cooperative gpNu1 and IHF binding to the cos site in lambda DNA using a quantitative electrophoretic mobility shift (EMS) assay. These studies provide direct experimental support for the long presumed cooperative assembly of gpNu1 and IHF at the cos sequence of lambda DNA. Further, circular permutation experiments demonstrate that the viral and host proteins each introduce a strong bend in cos-containing DNA, but not nonspecific DNA substrates. Thus, specific recognition of viral DNA by the packaging apparatus is mediated by both DNA sequence information and by structural alteration of the duplex. The relevance of these results with respect to the assembly of a viral DNA-packaging motor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号