首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postpartum involution of corpora lutea was examined by electron microscope cytochemistry of guinea pig ovaries previously fixed by vascular perfusion, a method which produces optimal preservation of steroid-secreting cells and yet maintains enzyme activity. The intracellular digestive apparatus was identified through the localization of two acid hydrolases, acid phosphatase (ACPase) and arylsulfatase. Other marker enzymes localized were thiamine pyrophosphatase (in Golgi cisternae) and alkaline phosphatase (along plasma membranes). Prolonged osmication was used to mark the outer Golgi cisterna. The results demonstrate that luteal cell regression is characterized by a striking increase in the number of lysosomes and the appearance of numerous, double-walled autophagic vacuoles. Both lysosomes and the space between the double walls of autophagic vacuoles exhibit ACPase and arylsulfatase activity. In contrast to earlier periods, just before and during regression, Golgi complex-endoplasmic reticulum-lysosomes (GERL) is markedly hypertrophied, displaying intense acid hydrolase activity. On the basis of various criteria, GERL is proposed to function in the formation of lysosomes and autophagic vacuoles. Lysosomes seem to develop from GERL as focal protuberances of varying size and shape, which detach from the parent structure. Double- walled autophagic vacuoles, often large and complex in structure, initially are produced as GERL cisternae envelop small areas of cytoplasm. Lytic enzymes, perhaps furnished by the engulfing membranes and trapped lysosomes, presumably bring about digestion of the contents of these vacuoles, producing first aggregate-type inclusions, then, as the contents are further degraded, myelin figure-filled residual bodies. ACPase activity occasionally appears within smooth endoplasmic reticulum tubules and cisternae in advanced regression, possibly suggesting that lytic enzymes utilize this membrane system as an access route to GERL. These data indicate that cellular autophagy is a prominent mechanism underlying luteal cell involution during normal postpartum degeneration of guinea pig corpora lutea. Furthermore they suggest that in regressing luteal cells GERL is responsible for packaging acid hydrolases into lytic bodies.  相似文献   

2.
This study characterizes the cytochemical properties of the Golgi complex, the structure which corresponds to Golgi complex-endoplasmic reticulum-lysosomes (GERL), and the granule population in luteal cells of guinea pigs at the time of maximum progesterone secretion, in material fixed by vascular perfusion, a method particularly suited for preserving both fine structure and enzyme activity. The distribution of several marker enzymes was determined by electron microscope cytochemistry. Acid phosphatase (ACPase) and arylsulfatase were used to identify structures containing lysosomal proteins. To resolve specific problems, additional cytochemical markers were employed: localization of thiamine pyrophosphatase (TPPase) (in the Golgi complex) and alkaline phosphatase (ALPase) (a plasma membrane marker), and prolonged osmication (a generally accepted method of marking the outer cisterna of the Golgi complex). The results demonstrate that at the time of peak steroid secretion the Golgi complex in luteal cells, in marked contrast to that of most other cell types, typically displays intense ACPase activity in all of its cisternae. Similarly, all Golgi cisternae stain after prolonged osmication and may show TPPase activity. On the other hand, GERL in luteal cells of this age, unlike that in most cells, commonly shows low levels of, or lacks, ACPase activity. However, GERL resembles that of other cell types in being TPPase-negative and in being unstained by treatment with aqueous OsO4. GERL and some Golgi cisternae are reactive for ALPase. The granule population in luteal cells of this stage consists of lysosomes, multivesicular bodies, electrontransparent vacuoles, and microperoxisome-like bodies. These results form a base line with which luteolytic changes described in the companion study (Paavola, L.G. 1978. The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. J. Cell. Biol. 79:59--73.) can be compared.  相似文献   

3.
Cultured human skin fibroblasts contain an extensive GERL network. The GERL consists of acid phosphatase-positive polygonal tubules and tuberous thickenings which are adjacent to the Golgi cisternae. It often surrounds lucent vacuoles and rarely lipid bodies. Cultures examined at various intervals after subculturing, passages in culture and at different ages of the source of the primary fibroblasts demonstrate no significant morphologic variation in GERL. However, the network appears to fragment in mitotic fibroblasts. Cultured fibroblasts from patients with lysosomal storage diseases exhibit a normal GERL. Exposure of fibroblasts to non-toxic levels of chloroquine and ammonium chloride result in increasing dilatation of the GERL and the resultant formation of large cytoplasmic vacuoles. These observations support the previously proposed theory that this network is a special form of lysosome packaged to contain a large membrane pool.  相似文献   

4.
H Fujita  H Okamoto 《Histochemistry》1979,64(3):287-295
The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.  相似文献   

5.
When a semisynthetic diet containing 1% orotic acid (OA) is fed to rats, the endoplasmic reticulum (ER) of hepatocytes vesiculates and lipoprotein (LP) droplets accumulate within the vesicles. When clofibrate (ethyl chlorophenoxyisobutyrate, CPIB) is added to the orotic acid-rich diet, the ER cisternae reform and the LP is mobilized through the reconstituted ER. A remarkable restoration of normal hepatocyte ultrastructure occurs except for a few organelles. From their morphological appearance it was suggested that cisternae which became dilated with small LP particles were part of GERL, abnormally enlarged. The present communication validates this interpretation through ultrastructural cytochemistry which can distinguish GERL from the adjacent Colgi apparatus. GERL shows acid phosphatase (AcPase) but not thiamine pyrophosphatase (TPPase) activity. In contrast, the adjacent Golgi element shows thiamine pyrophosphatase but not acid phosphatase activity. From such cytochemical studies we have recently proposed that GERL in normal rat hepatocytes may be involved in transforming LP particles, by enzymes like lipases that were presumed to be present in this hydrolase-rich portion of smooth ER. In the situation studied in this communication, the addition of ethyl chlorophenoxyisobutyrate to the diet causes the release from the ER of large amounts of LP to the Golgi apparatus and to GERL. Apparently the capacity of GERL to metabolize LP is exceeded and lipid accumulates in the residual bodies.  相似文献   

6.
Summary The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.This study was supported by a grant from the Japan Educational Ministry  相似文献   

7.
Colchicine administered to adult rats at a dosage of 0.5 mg/100 g of body weight effected a disorganization of the Golgi apparatus in pancreatic acinar cells. The results obtained after various periods of treatment (10 min to 6 h) showed (a) changes in all components of the Golgi complex, and (b) occurrence of large vacuoles that predominated in cytoplasmic areas outside the Golgi region. The alterations in Golgi stacks concerned elements of the proximal and distal side: (a) accumulation of transport vesicles, (b) formation of small, polymorphic secretion granules, and (c) alterations in the cytochemical localization of enzymes and reaction product after osmification. Transport vesicles accumulated and accompanied short, dilated cisternae, which lack mostly the reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase, and osmium deposits after prolonged osmification. After 4 to 6 h of treatment, accumulated transport vesicles occupied extensive cellular areas; stacked cisternae were not demonstrable in these regions. The changes on the distal Golgi side included GERL elements: condensing vacuoles were diminished; they were substituted by small, polymorphic zymogen granules, which appeared to be formed by distal Golgi cisternae and by rigid lamellae. Unusually extended coated regions covered condensing vacuoles, rigid lamellae, and polymorphic secretion granules. A cytochemical distinction between Golgi components and GERL was possible neither in controls nor after colchicine treatment. The cytochemical alterations in Golgi components were demonstrable 20-30 min following administration of colchicine; at 45 min, initial morphological changes--augmentation of transport vesicles and formation of polymorphic zymogen granules--became apparent. 20 min after administration of colchicine, conspicuous groups of large vacuoles occurred. They were located mostly in distinct fields between cisternae of the endoplasmic reticulum, and were accompanied by small osmium--reactive vesicles. Stacked cisternae were not demonstrable in these fields. Vacuoles and vesicles were devoid of reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. The results provide evidence that formation of stacked Golgi cisternae is impaired after colchicine treatment. The colchicine--induced disintegration of the Golgi complex suggests a regulatory function of microtubules in the organization of the Golgi apparatus.  相似文献   

8.
Envelopment of herpes simplex virus type-1 (HSV-1) was investigated in relation to membrane differentiation in dissociated anterior pituitary cells. The number of cells stained positively with anti-HSV-1 serum was increased from 16 h to 31 h post infection. During this period, electron microscopy revealed that a number of nucleocapsids (unenveloped particles) were accumulated in the Golgi area, where they frequently became surrounded by a double membrane of short Golgi cisternae or by one with a Golgi associated endoplasmic reticulum lysosome (GERL)-like structure. The inner membrane of the cisterna surrounding the nucleocapsids showed regional specialization which was characterized by increased thickness and electron opacity. Acid phosphatase activity, a marker for GERL or trans Golgi cisternae, appeared in the cytoplasmic short cisternae surrounding the nucleocapsids, whereas glucose-6-phosphatase activity, a marker for the nuclear envelope or for endoplasmic reticulum, was not demonstrated in such cisternae. Monoclonal antibody against glycoprotein gD revealed that gD was localized in the trans Golgi membrane as well as in the envelope of the virion. The antibody-binding sites were highly concentrated in the area where Golgi membranes showed increased opacity. Furthermore, nucleocapsids were surrounded exclusively by gD-positive cisternal (Golgi or Golgi-derived) membranes. Thus, our results indicate that the envelope of HSV is derived from trans Golgi cisterna (GERL), and that some viral components, including gD, destined for the envelope may be assembled initially in the Golgi membrane, which is thereby transformed into the envelope of the virus.  相似文献   

9.
Published electron microscopic and cytochemical studies (thiamine pyrophosphatase and acid phosphatase) on exocrine pancreas cells of guinea pig, hamster, rat and rabbit have demonstrated that the nascent secretory granules, or condensing vacuoles, are part of GERL. The studies reported here show this to be true of the mouse pancreatic exocrine cells as well, thus permitting comparison of this cell type in the C57 black mouse and its "beige" mutant. This is of considerable interest because GERL is very much enlarged in these cells of the beige mouse. Most of GERL consists of wide dilated portions filled with electron-opaque materials that appear to be packaged into huge residual body-type lysosomes ("anomalous granules"). Acid phosphatase activity is demonstrable not only in these portions of GERL, but also in the condensing vacuoles as in pancreatic acinar cells in the black mouse where these dilated lysosome-producing regions are not present.  相似文献   

10.
Summary The short term effects of refeeding on the Golgi apparatus and lysosomes of the rat exocrine pancreas were evaluated by ultrastructural, morphometric and cytochemical methods. Ten minutes after refeeding, there was a significant enlargement of Golgi cisternae and a significant increase, compared with the controls, in the number of condensing vacuoles and lysosomes. These modifications were accompanied by the appearance of acid phosphatase activity in stacked Golgi cisternae (as well as GERL) of some cells. One hour after refeeding, there were about the same numbers of condensing vacuoles and lysosomes as in the control; Golgi cisternae were still significantly enlarged, compared with the controls, but they were no longer reactive for acid phosphatase. In both fasting and refed animals, acid phosphatase activity was demonstrable in tubular lysosomes.The data are interpreted in terms both of membrane disposal and recycling, leading to enhanced formation of zymogen granules, during physiologically stimulated secretion.  相似文献   

11.
The trans Golgi face in rat small intestinal absorptive cells   总被引:1,自引:0,他引:1  
In the small intestine cell differentiation from immature crypt cells to mature absorptive cells localized along the villi is accompanied by alterations in the organization of the trans Golgi side. In immature crypt cells the transmost Golgi cisterna is usually located closely adjacent to the other cisternae thus being a component of the stack. Concomitantly with cell differentiation the transmost cisterna of an increasing number of Golgi stacks sets off from the other cisternae being then located at various distances to the stacks. This transmost cisterna has, as in several other cell types, been interpreted as "GERL" (Golgi associated endoplasmic reticulum lysosomes [20, 28]) and thus, has been postulated to represent a specialized region of the endoplasmic reticulum. Our results, however, have shown that the cytochemical staining pattern which has been used as a basis for the differentiation of GERL from Golgi components is not present in crypt cells nor in mature absorptive cells of the proximal small intestine: identical cisternae react for thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. Thiamine pyrophosphatase and inosine diphosphatase--enzymes characteristic for Golgi cisternae--are apparent over transmost cisternae defined as GERL, too, and in addition, acid phosphatase--postulated as GERL-marker--is demonstrable over stacked Golgi cisternae. This overlapping cytochemical reaction, as well as the alterations during cell differentiation, indicate that those structures which have been described as GERL are to be interpreted as Golgi components rather than as endoplasmic reticulum. On the other hand, endoplasmic reticulum is a constant component of the trans Golgi face in undifferentiated crypt-base cells and in maturing cells of the crypt-top region. From its localization closely adjacent to trans Golgi cisternae it may be termed "Golgi-associated endoplasmic reticulum"; however, these cisternae of endoplasmic reticulum are constantly devoid of acid phosphatase. No indications exist for continuities with the thiamine pyrophosphatase-, inosine diphosphatase-, and acid phosphatase-positive transmost Golgi cisternae, and for an engagement in production of lysosomes.  相似文献   

12.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

13.
Phosphatase cytochemistry was used to distinguish between the Golgi apparatus and GERL (considered as a specialized region of endoplasmic reticulum [ER] at the inner [trans] aspect of the Golgi stack) in pancreatic exocrine cells of guinea pig, rat, rabbit, and hamster. The trans element of the Golgi stack exhibits thiamine pyrophosphatase (TPPase) but no acid phosphatase (AcPase) activity. In contrast, GERL shows AcPase but no TPPase activity. The nascent secretory granules, or condensing vacuoles, are expanded cisternal portions of GERL. Continuities of condensing vacuoles with rough ER are suggested, and it is proposed that some secretory components may have direct access to the condensing vacuoles from ER. Connections of Golgi apparatus with GERL were not seen.  相似文献   

14.
Summary The effect of short-time treatment with the ionophore monensin, administered intraluminally at concentrations of 5 and 10 M, was studied on the Golgi apparatus of absorptive cells in the small intestine of the rat. At 2–3 min after treatment most of the Golgi stacks exhibited dilated cisternae. At 4–5 min stacked cisternae were absent; they were replaced by groups of smooth-surfaced vacuoles. Dilatation and vacuolization occurred in the entire stacks without preferential effect on any particular Golgi subcompartment.Monensin did not influence the cytochemical Golgi reaction of thiamine pyrophosphatase and acid phosphatase. The characteristic staining pattern of these two enzymes in all Golgi cisternae of absorptive cells in the proximal small intestine, and the reactivity restricted to trans cisternae in distal segments of the small intestine, were unchanged after treatment with monensin. In the distal small intestine, the cytochemical pattern allowed the monensin-induced vacuoles to be attributed to the former cisor trans-Golgi face. Further, the cytochemical results demonstrate that vacuolization is not restricted to the stacked cisternae, but includes the trans-most cisterna. The latter, usually located at some distance from the Golgi stacks, has been defined as belonging to the GERL system in several types of cells. The clear response to monensin, an agent that selectively affects the Golgi apparatus, indicates common properties between trans-most and stacked Golgi cisternae.  相似文献   

15.
The Onychophora feed on small arthropods and produce saliva when ingesting prey. Although saliva undoubtedly helps to liquefy the food its constituents have not yet been fully described. The salivary glands, two long tubes of glandular epithelium, are known to secrete a powerful protease, however, besides other enzymes and mucus. In Peripatoides novae-zealandiae there are protein-secreting cells of three types, referred to here as columnar, cuboidal and modified cells, and mucus cells. The anterior two-thirds of the gland show most cell diversity, while the posterior region consists mainly of columnar cells. These are the most numerous elements overall and they probably secrete salivary protease. In thick resin sections the granules of all protein-secreting cells stain strongly with methylene blue. Those of columnar cells are markedly uneven in size and accumulate distally, eventually filling the cytoplasm. More proximal Golgi regions may be discernible. Mucus cells are all of one type and their secretion droplets are stained lightly by methylene blue. The electron microscope shows that distal microvilli, desmosomes and septate junctions are common to all gland cells. In columnar cells, secretory material is contributed by Golgi complexes and by rough endoplasmic reticulum. Early secretory vacuoles containing dense material are seen in the concavity of Golgi regions. They are precursors to larger condensing vacuoles whose contents have a more flocculent appearance, and which may attain 3–4 μm in diameter. These evolve into secretory granules, usually of uneven texture, which are up to 2–5 μm in diameter. Histochemical tests for acid phosphatase show moderate amounts of enzyme throughout the gland. In whole mounts and sections the strongest reaction is in a band of cuboidal cells along the anterior median border. Columnar cells show a diffuse cytoplasmic reaction towards the base and sometimes distal to the nucleus, and mucus cells may also react strongly round the nucleus. Cytoplasm near the lumen shows little reaction. The secretory granules do not appear to contain active enzyme. Under the electron microscope a positive reaction for acid phosphatase is seen in lysosomal derivatives near the base and lateral periphery of gland cells. These bodies are probably autophagic vacuoles and they may contain membranous whorls and possibly old secretion granules. Acid phosphatase is involved also in the elaboration of new secretory granules in both columnar and mucus cells. Dense reaction product is found in a system of interconnected tubules and cisternae near the innermost face of the Golgi complex, which is interpreted as GERL. Acid phosphatase is present in the peripheral zone of adjacent early secretory vacuoles, and interconnections occur between GERL and secretory vacuoles. It is suggested that GERL tubules containing the enzyme may fuse with early secretory vacuoles and release acid phosphatase at their periphery. The acid phosphatase reaction is negative in large condensing vacuoles and most secretory granules. These findings are consistent with what is known from mammalian cells, including those of salivary glands.  相似文献   

16.
Ultrastructural study of GERL in beige mouse alveolar macrophages   总被引:6,自引:4,他引:2       下载免费PDF全文
Alveolar macrophages of the beige mouse mutant have a system of smooth- surfaced elements with the hallmarks of GERL. GERL also appears to produce residual bodies, and both organelles show cytochemically demonstrable acid phosphatase activity. When cells are exposed to colloidal silver, the tracer is endocytosed via pinocytic vacuoles to GERL.  相似文献   

17.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

18.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

19.
T Yajima 《Histochemistry》1988,90(4):245-253
The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases. In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosomes derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. The observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts. These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

20.
Summary The ultrastructural localization of acid phosphatase (ACPase) activity was examined in cultured human gingival fibroblasts in the formative and resorptive phases.In the collagen-secreting fibroblasts, weak ACPase activity was demonstrated in the lysosomes, inner Golgi cisternae, and condensing vacuoles, and none was found in the Golgi-associated endoplasmic reticulum-lysosome system (GERL), presecretory granules, or secretory granules. On the contrary, collagen phagocytosis induced strong ACPase activity in the GERL, which was in addition to the weaker activity found in the same sites as those in the collagen-secreting cells. At the same time, collagen secretion was suppressed, and dense elongated secretory bodies associated with ACPase activity accumulated within the cells. When collagen fibrils had been interiorized in whole or in part within the phagosomes, primary lysosome derived from the Golgi-GERL complex then fused with them to form phagolysosomes. Collagen degradation occurred within these bodies. the observations indicate significant differences in ACPase activity used as a marker for lysosomal enzyme activities in the different functional phases of fibroblasts.These results suggest that fibroblasts work only one way at a given time, viz., collagen synthesis or collagen degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号