首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of genotoxicity by Cr (VI) is dependent on its reductive activation inside the cell. Our recent studies have found that reduction of Cr (VI) by cysteine resulted in the formation of mutagenic Cr (III)-DNA adducts in the absence of oxidative DNA damage. In this work, we examined the formation of oxidative and Cr (III)-dependent types of DNA damage under a broader range of Cr (VI) and cysteine concentrations and investigated a potential role of this reducer in intracellular metabolism of Cr (VI). Peripheral lymphocytes from unexposed humans had 7.8-fold excess of glutathione over cysteine, whereas lymphocytes from stainless steel welders contained only 3 times higher amount of glutathione (p = 0.0009) which was entirely caused by the decrease in the concentration of glutathione. A strong correlation (r = 0.72) between the levels of both thiols was found in lymphocytes from controls. The number of DNA-protein crosslinks in lymphocytes from welders was 4.1 times higher than among controls, indicating the presence of Cr (VI)-dependent DNA damage. The average rate of Cr (VI) reduction by cysteine was approximately 5 times faster than that by glutathione. Higher reduction rate combined with the decrease in the intracellular concentration of glutathione should make cysteine a predominant Cr (VI)-reducing thiol in lymphocytes of welders. Analysis of the initial rates of Cr (VI) reduction by different concentrations of cysteine suggested the presence of one- and two-electron pathways, with one-electron mechanism dominating in the physiological range of concentrations. There was no detectable formation of DNA breaks or abasic sites under a broad range of Cr (VI) and cysteine concentrations, resulting in up to 68-fold differences in the rates of reduction and the production of as many as 3 Cr (III)-DNA adducts per 10 bp. The reactions with slow reduction rates (low concentrations of cysteine) led to the most extensive formation of Cr (III)DNA adducts. In summary, these results further establish Cr (III)-DNA adducts as the major form of DNA damage resulting from Cr (VI) metabolism by cysteine. The role of cysteine in reduction of Cr (VI) becomes more significant under conditions of occupational exposure to Cr (VI)-containing welding fumes.  相似文献   

2.
Free radical reactions are believed to play an important role in the mechanism of Cr(VI)-induced carcinogenesis. Most studies concerning the role of free radical reactions have been limited to soluble Cr(VI). Various studies have shown that solubility is an important factor contributing to the carcinogenic potential of Cr(VI) compounds. Here, we report that reduction of insoluble PbCrO4 by glutathione reductase in the presence of NADPH as a cofactor generated hydroxyl radicals (.OH) and caused DNA damage. The .OH radicals were detected by electron spin resonance (ESR) using 5,5-dimethyl-N-oxide as a spin trap. Addition of catalase, a specific H2O2 scavenger, inhibited the .OH radical generation, indicating the involvement of H2O2 in the mechanism of Cr(VI)-induced .OH generation. Catalase reduced .OH radicals measured by electron spin resonance and reduced DNA strand breaks, indicating .OH radicals are involved in the damage measured. The H2O2 formation was measured by change in fluorescence of scopoletin in the presence of horseradish peroxidase. Molecular oxygen was used in the system as measured by oxygen consumption assay. Chelation of PbCrO4 impaired the generation of .OH radical. The results obtained from this study show that reduction of insoluble PbCrO4 by glutathione reductase/NADPH generates .OH radicals. The mechanism of .OH generation involves reduction of molecular oxygen to H2O2, which generates .OH radicals through a Fenton-like reaction. The .OH radicals generated by PbCrO4 caused DNA strand breakage.  相似文献   

3.
4.
Reductive activation of carcinogenic Cr(VI) is required for the induction of DNA damage and mutations. Here, we examined the formation of Cr-DNA adducts in the reactions of Cr(VI) with its dominant biological reducer, vitamin C (ascorbate). Reductive conversion of Cr(VI) to Cr(III) by ascorbate produced stable Cr-DNA adducts, of which approximately 25% constituted ascorbate-Cr(III)-DNA cross-links. No evidence was found for the involvement of Cr(V) or Cr(IV) intermediates in the formation of either binary or ternary adducts. The cross-linking reaction was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. The yield of Cr(III)-DNA adducts was similar on dsDNA and AGT, ACT, or CT oligonucleotides and was strongly inhibited by Mg(2+), suggesting predominant coordination of Cr(III) to DNA phosphate oxygens. We also detected cross-linking of ascorbate to DNA in Cr(VI)-exposed human lung A549 cells that were preincubated with dehydroascorbic acid to create normal levels of intracellular ascorbate. Ascorbate-Cr-DNA cross-links accounted for approximately 6% of the total Cr-DNA adducts in A549 cells. Shuttle-vector experiments showed that ascorbate-Cr-DNA cross-links were mutagenic in human cells. Our results demonstrate that in addition to reduction of Cr(VI) to DNA-reactive Cr(III), vitamin C contributes to the genotoxicity of Cr(VI) via a direct chemical modification of DNA. The absence of Asc in A549 and other human cultured cells indicates that cells maintained under the usual in vitro conditions lack the most important reducing agent for Cr(VI) and would primarily display slow thiol-dependent activation of Cr(VI).  相似文献   

5.
6.
Reduction of carcinogenic Cr(VI) by vitamin C generates ascorbate-Cr(III)-DNA cross-links, binary Cr(III)-DNA adducts, and can potentially cause oxidative DNA damage by intermediate reaction products. Here, we examined the mutational spectrum and the importance of different forms of DNA damage in genotoxicity and mutagenicity of Cr(VI) activated by physiological concentrations of ascorbate. Reduction of Cr(VI) led to a dose-dependent formation of both mutagenic and replication-blocking DNA lesions as detected by propagation of the pSP189 plasmids in human fibroblasts. Disruption of Cr-DNA binding abolished mutagenic responses and normalized the yield of replicated plasmids, indicating that Cr-DNA adducts were responsible for both mutagenicity and genotoxicity of Cr(VI). The absence of DNA breaks and abasic sites confirmed the lack of a significant production of hydroxyl radicals and Cr(V)-peroxo complexes in Cr(VI)-ascorbate reactions. Ascorbate-Cr(III)-DNA cross-links were much more mutagenic than smaller Cr(III)-DNA adducts and accounted for more than 90% of Cr(VI) mutagenicity. Ternary adducts were also several times more potent in the inhibition of replication than binary complexes. The Cr(VI)-induced mutational spectrum consisted of an approximately equal number of deletions and G/C-targeted point mutations (51% G/C --> T/A and 30% G/C --> A/T). In Escherichia coli cells, Cr(VI)-induced DNA adducts were only highly genotoxic but not mutagenic under either normal or SOS-induced conditions. Lower toxicity and high mutagenicity of ascorbate-Cr(III)-DNA adducts in human cells may result from the recruitment of an error-prone bypass DNA polymerase(s) to the stalled replication forks. Our results suggest that phosphotriester-type DNA adducts could play a more important role in human than bacterial mutagenesis.  相似文献   

7.
Genotoxic activity of hexavalent chromium (chromate) results from its reductive activation inside the cell. Cr(VI) metabolism in vivo is primarily driven by ascorbate (Asc) but in cultured cells by glutathione (GSH). Given the common use of cultured cells for mechanistic studies, it is important to establish whether Cr(VI) activated by Asc and GSH displays the same genotoxic properties. Using 2',7' dichlorofluorescin (DCFH) as a redox sensitive probe, we found that Asc-dependent reduction of Cr(VI) in vitro under physiological conditions generated 25-80 times lower yields of oxidants compared to GSH. When both reducers were present, Asc dominated Cr(VI) metabolism and inhibited DCFH oxidation. Consistent with the findings in defined chemical reactions, restoration of physiological levels of Asc in human lung H460 cells led to the loss of their hypersensitivity to clonogenic killing by Cr(VI) in the presence of methoxyamine, which inhibits base excision repair of oxidative DNA damage. Despite suppressed oxidative damage, Asc-containing cells formed a large number of DNA double-strand breaks after exposure to a dose of Cr(VI) corresponding to the drinking water standard of 100 ppb. Our results indicate that Asc-driven metabolism of Cr(VI) shifts its genotoxicity toward nonoxidative mechanisms.  相似文献   

8.
9.
10.
Intracellular reduction of carcinogenic Cr(VI) generates Cr-DNA adducts formed through the coordination of Cr(III) to DNA phosphates (phosphotriester-type adduct). Here, we examined the role of Cr(III)-DNA adducts in mutagenesis induced by metabolism of Cr(VI) with cysteine. Reduction of Cr(VI) caused a strong oxidation of 2', 7'-dichlorofluoroscin (DCFH) and extensive Cr-DNA binding but no DNA breakage. Cr-DNA adducts induced unwinding of supercoiled plasmids and structural distortions in the DNA helix as detected by decreased ethidium bromide binding. Propagation of Cr-treated pSP189 plasmids in human fibroblasts led to a dose-dependent formation of the supF mutants and inhibition of replication. Blocking of Cr(III)-DNA binding by occupation of DNA phosphates with Mg(2+) or by sequestration of Cr(III) by inorganic phosphate or EDTA eliminated mutagenic responses and restored a normal yield of replicated plasmids. Dissociation of Cr(III) from DNA by a phosphate-based reversal procedure returned mutation frequency to background levels. The mutagenic responses at the different phases of the reduction reaction were unrelated to the amount of reduced Cr(VI) but reflected the number and the spectrum of Cr(III)-DNA adducts that were formed. Ternary cysteine-Cr(III)-DNA adducts were approximately 4-5 times more mutagenic than binary Cr(III)-DNA adducts. Although intermediate reaction products (CrV/IV, thiyl radicals) were capable of oxidizing DCFH, they were insufficiently reactive to damage DNA. Single-base substitutions at G/C pairs were the predominant type of Cr-induced mutations. The majority of mutations occurred at the sites where G had adjacent purine in the 3' or 5' position. Overall, our results present the first evidence that Cr(III)-DNA adducts play the dominant role in the mutagenicity caused by the metabolism of Cr(VI) by a biological reducing agent.  相似文献   

11.
Bacterial strains, previously isolated from a chromium-polluted soil, were identified on the basis of Gram reaction and biochemical characteristics (Biolog system). Moreover, chromate MICs, chromate reduction capability, multiple heavy metal tolerance, and antibiotic susceptibility were tested for each isolate. All strains but one were Gram-positive and resistant to high concentrations of chromate. The most Cr(VI)-resistant isolate (22mM) was identified as Corynebacterium hoagii. All Cr(VI)-resistant strains except the isolate ChrC20 were capable of catalyzing the reduction of Cr(VI) to Cr(III), a less toxic and less water-soluble form of chromium. The only isolate Cr(VI)-sensitive, attributed to the Pseudomonas genus, also exhibited Cr(VI)-reduction. Isolates were also screened for the presence of plasmid DNA. The strains ChrC20 and ChrB20 harbored one and two plasmids of high molecular mass, respectively. This approach permitted selection of some bacterial strains, which could be used for bioremediation of Cr(VI)-polluted environments. Received: 21 February 2002 / Accepted: 27 March 2002  相似文献   

12.
Mitochondria reduce Cr(VI) to Cr(V) with concomitant generation of reactive oxygen species, thereby exhibiting cytotoxic effects leading to apoptosis in various types of cells. To clarify the mechanism by which Cr(VI) induces apoptosis, we examined the effect of Cr(VI) on Chinese hamster ovary (CHO) cells. Cr(VI) increased cellular levels of ceramide by activating acid sphingomyelinase (ASMase) and inhibiting the phosphorylation of pleckstrin homology domain-containing protein kinase B (Akt). Cr(VI) also induced cyclosporin A- and trifluoperazine-sensitive depolarization of mitochondria and activated caspase-3, 8 and 9, thereby causing fragmentation of cellular DNA. The presence of desipramine, an inhibitor of ASMase, and membrane permeable pCPT-cAMP suppressed the Cr(VI)-induced activation of caspases and DNA fragmentation. These results suggested that accumulation of ceramide play an important role in the Cr(VI)-induced apoptosis of CHO cells through activation of mitochondrial membrane permeability transition.  相似文献   

13.
14.
The reduction of hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III), can be an important aspect of remediation processes at contaminated sites. Cellulomonas species are found at several Cr(VI) contaminated and uncontaminated locations at the Department of Energy site in Hanford, Washington. Members of this genus have demonstrated the ability to effectively reduce Cr(VI) to Cr(III) fermentatively and therefore play a potential role in Cr(VI) remediation at this site. Batch studies were conducted with Cellulomonas sp. strain ES6 to assess the influence of various carbon sources, iron minerals, and electron shuttling compounds on Cr(VI) reduction rates as these chemical species are likely to be present in, or added to, the environment during in situ bioremediation. Results indicated that the type of carbon source as well as the type of electron shuttle present influenced Cr(VI) reduction rates. Molasses stimulated Cr(VI) reduction more effectively than pure sucrose, presumably due to presence of more easily utilizable sugars, electron shuttling compounds or compounds with direct Cr(VI) reduction capabilities. Cr(VI) reduction rates increased with increasing concentration of anthraquinone-2,6-disulfonate (AQDS) regardless of the carbon source. The presence of iron minerals and their concentrations did not significantly influence Cr(VI) reduction rates. However, strain ES6 or AQDS could directly reduce surface-associated Fe(III) to Fe(II), which was capable of reducing Cr(VI) at a near instantaneous rate. These results suggest the rate limiting step in these systems was the transfer of electrons from strain ES6 to the intermediate or terminal electron acceptor whether that was Cr(VI), Fe(III), or AQDS.  相似文献   

15.
Lei T  He QY  Cai Z  Zhou Y  Wang YL  Si LS  Cai Z  Chiu JF 《Proteomics》2008,8(12):2420-2429
Chromium (Cr) has been widely used in industry for more than one century. Exposure to hexavalent Cr compounds is strongly associated with increasing risk of lung cancer. Extensive researches at DNA level indicated that generation of ROS from the reduction of Cr(VI) leading to DNA damage is the major cause of the toxicity and carcinogenicity of Cr(VI). The present study in cellular and protein levels confirmed that Cr(VI) induced apoptosis of lung epithelial cells (LEC) via ROS generation. To view the differentially expressed proteins in the process of Cr(VI) reduction, subcellular proteomics was applied and allowed the identification of more than 30 proteins with expression alteration. Most of those proteins are correlated with ROS-elicited responses, which were further validated by Western blotting analysis, induction of p53 pathway and antioxidative treatment. The current findings provided additional evidence in protein level to support the claim that ROS generated during the process of Cr(VI) reduction are involved in the Cr(VI)-induced toxicity and carcinogenesis.  相似文献   

16.
Mitochondria reduce Cr(VI) to Cr(V) with concomitant generation of reactive oxygen species, thereby exhibiting cytotoxic effects leading to apoptosis in various types of cells. To clarify the mechanism by which Cr(VI) induces apoptosis, we examined the effect of Cr(VI) on Chinese hamster ovary (CHO) cells. Cr(VI) increased cellular levels of ceramide by activating acid sphingomyelinase (ASMase) and inhibiting the phosphorylation of pleckstrin homology domain-containing protein kinase B (Akt). Cr(VI) also induced cyclosporin A- and trifluoperazine-sensitive depolarization of mitochondria and activated caspase-3, 8 and 9, thereby causing fragmentation of cellular DNA. The presence of desipramine, an inhibitor of ASMase, and membrane permeable pCPT-cAMP suppressed the Cr(VI)-induced activation of caspases and DNA fragmentation. These results suggested that accumulation of ceramide play an important role in the Cr(VI)-induced apoptosis of CHO cells through activation of mitochondrial membrane permeability transition.  相似文献   

17.
Chromium can be found in the environment in two main valence states: hexavalent (Cr(VI)) and trivalent (Cr(III)). Cr(VI) salts are well known human carcinogens, but the results from in vitro studies are often conflicting. Cr(VI) primarily enters the cells and undergoes metabolic reduction; however, the ultimate product of this reduction, Cr(III) predominates within the cell. In the present work, we compared the effects of tri- and hexavalent chromium on the DNA damage and repair in human lymphocytes using the alkaline single cell gel electrophoresis (comet assay). Potassium dichromate induced DNA damage in the lymphocytes, measured as the increase in comet tail moment. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Cr(III) caused greater DNA migration than Cr(VI). The lymphocytes did not show measurable DNA repair. Vitamin C at 50 microM reduced the extent of DNA migration. This was either due to a decrease in DNA strand breaks and/or alkali labile sites induced by Cr(VI) or to the formation of DNA crosslinks by Cr(VI) in the presence of vitamin C. Vitamin C, however, did not modify the effects of Cr(III). Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by Cr(VI) but not the one induced by Cr(III). Lymphocytes exposed to Cr(VI) and treated with endonuclease III, which recognizes oxidized pyrimidines, displayed greater extent of DNA damage than those not treated with the enzyme. Such an effect was not observed when Cr(III) was tested. The results obtained suggest that reactive oxygen species and hydrogen peroxide may be involved in the formation of DNA lesions by hexavalent chromium. The comet assay did not indicate the involvement of oxidative mechanisms in the DNA-damaging activity of trivalent chromium and we speculate that its binding to cellular ligands may play a role in its genotoxicity.  相似文献   

18.
Inappropriate survival signaling after DNA damage may facilitate clonal expansion of genetically compromised cells, and it is known that protein tyrosine phosphatase (PTP) inhibitors activate key survival pathways. In this study we employed the genotoxicant, hexavalent chromium [Cr(VI)], which is a well-documented carcinogen of occupational and environmental concern. Cr(VI) induces a complex array of DNA damage, including DNA double strand breaks (DSBs). We recently reported that PTP inhibition bypassed cell cycle arrest and abrogated Cr(VI)-induced clonogenic lethality. Notably, PTP inhibition resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of DNA damage may lead to genomic instability (GIN), via cell cycle checkpoint bypass. The aim of the present study was to determine the effect of PTP inhibition on DNA DSB formation and chromosomal integrity after Cr(VI) exposure. Diploid human lung fibroblasts were treated with Cr(VI) in the presence or absence of the PTP inhibitor, sodium orthovanadate, for up to 24h, and cells were analyzed for DNA DSBs and chromosomal damage. Cr(VI) treatment induced a rapid increase in DNA DSBs, and a significant increase in total chromosomal damage (chromatid breaks and gaps) after 24h. In sharp contrast, PTP inhibition abrogated both DNA DSBs and chromosomal damage after Cr(VI) treatment. In summary, PTP inhibition in the face of Cr(VI) genotoxic stress decreases chromosomal instability (CIN) but increases mutagenesis, which we postulate to be a result of error-prone DNA repair.  相似文献   

19.
Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase δ/ε inhibitor, aphidicolin, but not 2′,3′-dideoxythymidine triphosphate (ddTTP), a polymerase β inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.  相似文献   

20.
Natural habitats are often characterized by the coexistence of Zn and Cr. This study assessed the potential of two Gram-positive, Cr(VI)-reducing, aerobic bacterial strains belonging to Arthrobacter genera, which were isolated from basalt samples taken from the most polluted region of the Republic of Georgia, to remediate Cr(VI) in environments in the presence of Zn(II). Our batch experiments revealed that the addition of Zn(II) to the tested bacterial cells significantly enhanced the accumulation of Cr. According to electron spin resonance (ESR) measurements, the presence of Zn(II) ions did not change the nature of Cr(V) and Cr(III) complexes generated during the microbial reduction of Cr(VI). The efficiency of Cr(VI) reduction also remained unchanged after the addition of 50 mg/l of Zn(II) to the bacterial cells. However, at high concentrations of Zn(II) (higher than 200 mg/l), the transformation of Cr(VI) to Cr(V) and Cr(III) complexes decreases significantly. In addition, it was shown that the accumulation pattern of Zn in the tested bacterial species in the presence of 100 mg/l of Cr(VI) fits the Langmuir–Freundlich model well. The two tested bacterial strains exhibited different characteristics of Zn accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号