首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial hydraulic conductivity along developing onion roots   总被引:24,自引:0,他引:24  
Although most studies have shown that water uptake varies along the length of a developing root, there is no consistent correlation of this pattern with root anatomy. In the present study, water movement into three zones of onion roots was measured by a series of mini-potometers. Uptake was least in the youngest zone (mean hydraulic conductivity, Lpr = 1.5 x 10(-7) +/- 0.34 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) in which the endodermis had developed only Casparian bands and the exodermis was immature. Uptake was significantly greater in the middle zone (Lpr = 2.4 x 10(-7) +/- 0.43 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) which had a mature exodermis with both Casparian bands and suberin lamellae, and continued at this level in the oldest zone in which the endodermis had also developed suberin lamellae (Lpr = 2.8 x 10(-7) +/- 0.30 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots). Measurements of the hydraulic conductivities of individual cells (Lp) in the outer cortex using a cell pressure probe indicated that this parameter was uniform in all three zones tested (Lp = 1.3 x 10(-6) +/- 0.01 x 10(-6) m MPa-1 s-1; +/- SE, n = 60 cells). Lp of the youngest zone was lowered by mercuric chloride treatment, indicating the involvement of mercury-sensitive water channels (aquaporins). Water flow in the older two root zones measured by mini-potometers was also inhibited by mercuric chloride, despite the demonstrated impermeability of their exodermal layers to this substance. Thus, water channels in the epidermis and/or exodermis of the older regions were especially significant for water flow. The results of this and previous studies are discussed in terms of two models. The first, which describes maize root with an immature exodermis, is the 'uniform resistance model' where hydraulic resistances are evenly distributed across the root cylinder. The second, which describes the onion root with a mature exodermis, is the 'non-uniform resistance model' where resistances can be variable and are concentrated in a certain layer(s) on the radial path.  相似文献   

2.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

3.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

4.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

5.
When the basal zones of 4-d-old hydroponically grown maize ( Zea mays L. cv. Seneca Horizon) roots were exposed to moist air for 2 d, the development of both endodermis and exodermis was affected. In the endodermis, Casparian bands enlarged and more cells developed suberin lamellae. The most striking effect was seen in the exodermis. In submerged controls, only 4% of the cells had Casparian bands, whereas in root regions exposed to air, 93% developed these structures. Similarly, in submerged roots 11% of the exodermal cells had either developing or mature suberin lamellae compared with 92% in the air-treated region. The majority of epidermal cells remained alive in the zone exposed to air. Some cell death had occurred earlier in the experiment when the seedlings were transferred from vermiculite to hydroponic culture. The precise stimulus(i) associated with the air treatment which led to accelerated development in both endodermis and exodermis is as yet unknown.  相似文献   

6.
The effects of puncturing the endodermis of young maize roots (Zea mays L.) on their transport properties were measured using the root pressure probe. Small holes with a diameter of 18 to 60 [mu]m were created 70 to 90 mm from the tips of the roots by pushing fine glass tubes radially into them. Such wounds injured about 10-2 to 10-3% of the total surface area of the endodermis, which, in these hydroponically grown roots, had developed a Casparian band but no suberin lamellae. The small injury to the endodermis caused the original root pressure, which varied from 0.08 to 0.19 MPa, to decrease rapidly (half-time = 10-100 s) and substantially to a new steady-state value between 0.02 and 0.07 MPa. The radial hydraulic conductivity (Lpr) of control (uninjured) roots determined using hydrostatic pressure gradients as driving forces was larger by a factor of 10 than that determined using osmotic gradients (averages: Lpr [hydrostatic] = 2.7 x 10-7 m s-1 MPa-1; Lpr [osmotic] = 2.2 x 10-8 m s-1 MPa-1; osmotic solute: NaCl). Puncturing the endodermis did not result in measurable increases in hydraulic conductivities measured by either method. Thus, the endodermis was not rate-limiting root Lpr: apparently the hydraulic resistance of roots was more evenly distributed over the entire root tissue. However, puncturing the endodermis did substantially change the reflection ([sigma]sr) and permeability (Psr) coefficients of roots for NaCl, indicating that the endodermis represented a considerable barrier to the flow of nutrient ions. Values of [sigma]sr decreased from 0.64 to 0.41 (average) and Psr increased by a factor of 2.6, i.e. from 3.8 x 10-9 to 10.1 x 10.-9 m s-1(average). The roots recovered from puncturing after a time and regained root pressure. Measurable increases in root pressure became apparent as soon as 0.5 to 1 h after puncturing, and original or higher root pressures were attained 1.5 to 20 h after injury. However, after recovery roots often did not maintain a stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots.  相似文献   

7.
Rice plants were grown hydroponically and roots were prepared for light and electron microscopy using standard techniques. The roots are bounded by an epidermis, exodermis, and fibrous layer. The exodermis has a suberin lamella along its inner tangential wall. The fibrous layer is composed of thick-walled lignified cells with little pitting. The cortical parenchyma is compact when young, but expands and separates to form a zone of cell walls and air spaces in a spoked arrangement. Supporting columns of living parenchyma cells are occasionally present, particularly near lateral roots. The endodermis is typical for grasses with Casparian strips, suberin lamellae, and tertiary state walls with numerous pits. The pericycle and pith become sclerified. Protoxylem elements alternate with protophloem in the young root; later, early metaxylem, late metaxylem, and metaphloem proliferate. The exodermis, fibrous layer, lacunate cortex, and endodermis appear to present a formidable barrier to radial ion movement in the mature portions of the root.  相似文献   

8.
The dimorphic exodermis of the root of onion (Allium cepa L.) consists of long and short cells, both of which have Casparian bands. The long cells and some of the short cells also have suberin lamellae. The proportion of short cells with lamellae increases with distance from the root tip and with plant age, but is not influenced by drought stress. In young regions of onion roots, characterized by a mature endodermis and an immature exodermis, the plasmalemma surface area that can be contacted by the soil solution is 90·9 mm2 per mm length of root, i.e. the sum of the plasmalemma surface areas of the epidermis, immature exodermis, cortical parenchyma and endodermis external to the Casparian band. This is reduced to 14·5–14·7 mm2 by the development of a Casparian band in the exodermis, which cuts off access to the cortical parenchyma, and by the development of suberin lamellae, which cut off access to the plasmalemmae of the long and some of the short cells of the exodermis. Death of all the epidermal cells, a consequence of drought, further reduces this area to 0·205–0·0183 mm2, i.e. the area of the outer tangential plasmalemmae of the short cells without suberin lamellae. In this condition, the root's capacity for ion uptake should be reduced but its capacity to resist water loss to the soil should be increased.  相似文献   

9.
The main barriers to the movement of water and ions in young roots of Zea mays were located by observing the effects of wounding various cell layers of the cortex on the roots' hydraulic conductivities and root pressures. These parameters were measured with a root pressure probe. Injury to the epidermis and cortex caused no significant change in hydraulic conductivity and either no change or a slight decline in root pressure. Injury to a small area of the endodermis did not change the hydraulic conductivity but caused an immediate and substantial drop in root pressure. When large areas of epidermis and cortex were removed (15–38% of total root mass), the endodermis was always injured and root pressure fell. The hydraulic conductance of the root increased but only by a factor of 1.2–2.7. The results indicate that the endodermis is the main barrier to the radial movement of ions but not water. The major barrier to water is the membranes and apoplast of all the living tissue. These conclusions were drawn from experiments in which hydrostatic-pressure differences were used to induce water flows across young maize roots which had an immature exodermis and an endodermis with Casparian bands but no suberin lamellae or secondary walls. The different reactions of water and ions to the endodermis can be explained by the huge difference in the permeability of membranes to these substances. A hydrophobic wall barrier such as the Casparian band should have little effect on the movement of water, which permeates membranes and, perhaps, also the Casparian bands easily. However, hydrophobic wall depositions largely prevent the movement of ions. Several hours after wounding the endodermis, root pressure recovered to some extent in most of the experiments, indicating that the wound in the endodermis had been partially healed.Abbreviations Lpr hydraulic conductivity of root; T1/2 = half-time of water exchange between root xylem and external medium This research was supported by a grant from EUROSILVA (project no. 39473C) to E.S., and by a Bilateral Exchange Grant jointly funded by the Deutsche Forschungsgemeinschaft and the Natural Sciences and Engineering Research Council of Canada to C.A.P. We thank Mr. Burkhard Stumpf for his excellent technicial assistance.  相似文献   

10.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

11.
Cholewa E  Peterson CA 《Plant physiology》2004,134(4):1793-1802
The pathway of Ca(2+) movement from the soil solution into the stele of the root is not known with certainty despite a considerable body of literature on the subject. Does this ion cross an intact, mature exodermis and endodermis? If so, is its movement through these layers primarily apoplastic or symplastic? These questions were addressed using onion (Allium cepa) adventitious roots lacking laterals. Radioactive Ca(2+) applied to the root tip was not transported to the remainder of the plant, indicating that this ion cannot be supplied to the shoot through this region where the exodermis and endodermis are immature. A more mature zone, in which the endodermal Casparian band was present, delivered 2.67 nmol of Ca(2+) mm(-1) treated root length d(-1) to the transpiration stream, demonstrating that the ion had moved through an intact endodermis. Farther from the root tip, a third zone in which Casparian bands were present in the exodermis as well as the endodermis delivered 0.87 nmol Ca(2+) mm(-1) root length d(-1) to the transpiration stream, proving that the ion had moved through an unbroken exodermis. Compartmental elution analyses indicated that Ca(2+) had not diffused through the Casparian bands of the exodermis, and inhibitor studies using La(3+) and vanadate (VO(4)(3-)) pointed to a major involvement of the symplast in the radial transport of Ca(2+) through the endodermis. It was concluded that in onion roots, the radial movement of Ca(2+) through the exodermis and endodermis is primarily symplastic.  相似文献   

12.
The exodermis of Iris germanica roots is multiseriate. Its outermost layer matures first with typical Casparian bands and suberin lamellae. But as subsequent layers mature, the Casparian band extends into the tangential and anticlinal walls of their cells. Compared with roots in which the endodermis represents the major transport barrier, the multiseriate exodermis (MEX) was expected to reduce markedly radial water and solute transport. To test this idea, precocious maturation of the exodermis was induced with a humid air gap inside a hydroponic chamber. Hydraulic conductivity (Lp(pc)) was measured on completely submerged roots (with an immature exodermis) and on air-gap-exposed root regions (with two mature exodermal layers) using a pressure chamber. Compared with regions of roots with no mature exodermal layers, the mature MEX reduced Lp(pc) from 8.5×10(-8) to 3.9×10(-8) m s(-1) MPa(-1). Puncturing the MEX increased Lp(pc) to 19×10(-8) m s(-1) MPa(-1), indicating that this layer constituted a substantial hydraulic resistance within the root (75% of the total). Alternatively, a root pressure probe was used to produce pressure transients from which hydraulic conductivity was determined, but this device measured mainly flow through the endodermis in these wide-diameter roots. The permeability of roots to NaCl and ethanol was also reduced in the presence of two mature MEX layers. The data are discussed in terms of the validity of current root models and in terms of a potential role for I. germanica MEX during conditions of drought and salt stress.  相似文献   

13.
Functions of passage cells in the endodermis and exodermis of roots   总被引:8,自引:0,他引:8  
Passage cells frequently occur in the endodermis and exodermis but are not ubiquitous in either layer. Passage cells occur in the form of short cells in the dimorphic type of exodermis. In both layers, Casparian bands are formed in all cells, but the subsequent development of suberin lamellae and thick, cellulosic walls are delayed or absent in the passage cells. Available evidence suggests that passage cells of the endodermis are important for the transfer of calcium and magnesium into the stele and thus into the transpiration stream. They become the only cells which present a plasmalemma surface to the soil solution (and are thus capable of ion uptake) when the epidermis and central cortex die. This occurs naturally in some herbaceous and woody species and is known to be promoted by drought. Most evidence indicates that the development of suberin lamellae in both the endodermis and exodermis increases the resistance of the root to the radial flow of water. Passage cells thus provide areas of low resistance for the movement of water, and the position of these cells in the endodermis (i.e., in close proximity to the xylem) is explained in terms of function. Exodermal passage cells have a cytoplasmic structure suggesting an active role in ion uptake. This may be related to the tendency of the epidermis to die, leaving the passage cells as the only ones with their membranes exposed to the soil solution. Passage cells in the exodermis attract endomycorrhizal fungi while those in the endodermis do not. It is clear that passage cells of the endodermis and exodermis play a variety of roles in the plant root system.  相似文献   

14.
BACKGROUND AND AIMS: The anatomical structure and development of adventitious roots were analysed in the basal monocotyledon, Acorus calamus, to determine to what extent those features are related to phylogenetic position. METHODS: Root specimens were harvested and sectioned, either with a hand microtome or freehand, at varying distances from the root tip and examined under the microscope using a variety of staining techniques. KEY RESULTS: Roots of Acorus calamus possess a unique set of developmental characteristics that produce some traits similar to those of another basal angiosperm group, Nymphaeales. The root apical meristem organization seems to be intermediate between that of a closed and an open monocotyledonous root apical meristem organization. The open-type root apical meristem consists of a curved zone of cortical initials and epidermal initials overlying the vascular cylinder initials; the epidermal part of the meristem varies in its association with the cortical initials and columellar initials of the promeristem. The cortex develops an endodermis with only Casparian bands, a dimorphic exodermis with Casparian bands and suberin lamellae, and a polygonal aerenchyma by differential expansion, as also observed in the Nymphaeales and some dicotyledonous species. The stele has characteristics like those of members of the Nymphaeaceae. CONCLUSIONS: Specific anatomical and developmental attributes of Acorus roots seem to be related to the phylogenetic position of this genus.  相似文献   

15.

Background and Aims

Most studies of exodermal structure and function have involved species with a uniseriate exodermis. To extend this work, the development and apoplastic permeability of Iris germanica roots with a multiseriate exodermis (MEX) were investigated. The effects of different growth conditions on MEX maturation were also tested. In addition, the exodermises of eight Iris species were observed to determine if their mature anatomy correlated with habitat.

Methods

Plants were grown in soil, hydroponics (with and without a humid air gap) or aeroponics. Roots were sectioned and stained with various dyes to detect MEX development from the root apical meristem, Casparian bands, suberin lamellae and tertiary wall thickenings. Apoplastic permeability was tested using dye (berberine) and ionic (ferric) tracers.

Key Results

The root apical meristem was open and MEX development non-uniform. In soil-grown roots, the exodermis started maturing (i.e. Casparian bands and suberin lamellae were deposited) 10 mm from the tip, and two layers had matured by 70 mm. In both hydro- and aeroponically grown roots, exodermal maturation was delayed. However, in areas of roots exposed to an air gap in the hydroponic system, MEX maturation was accelerated. In contrast, maturation of the endodermis was not influenced by the growth conditions. The mature MEX had an atypical Casparian band that was continuous around the root circumference. The MEX prevented the influx and efflux of berberine, but had variable resistance to ferric ions due to their toxic effects. Iris species living in well-drained soils developed a MEX, but species in water-saturated substrates had a uniseriate exodermis and aerenchyma.

Conclusions

MEX maturation was influenced by the roots'' growth medium. The MEX matures very close to the root tip in soil, but much further from the tip in hydro- and aeroponic culture. The air gap accelerated maturation of the second exodermal layer. In Iris, the type of exodermis was correlated with natural habitat suggesting that a MEX may be advantageous for drought tolerance.Key words: Iris germanica, roots, culture conditions, development, anatomy, apoplastic tracers, multiseriate exodermis, endodermis, root apical meristem  相似文献   

16.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

17.
《Aquatic Botany》1987,27(4):309-322
Root structure of the seagrass Zostera capensis Setchell was investigated by light and electron microscopy. Roots possess conspicuous root hairs which greatly increase the surface area available for absorption. Exodermal cells abutting root-hair bases possess transfer cell characteristics. The strategic location of these cells suggests that they participate in absorptive and/or transfer processes between the epidermis and cortex. Vascular parenchyma cells within the stele also possess transfer cell features. Wall ingrowths of these cells about xylem elements, sieve tubes, companion cells and other vascular parenchyma cells, suggesting that they play a role in absorptive and/or transfer processes between the stele and cortex. Apoplastic barriers in the form of suberin lamellae and Casparian bands occur in walls of both the exodermis and endodermis. However, plasmodesmata perforate the suberin lamellae in these walls, and a symplastic pathway can be traced from the root hairs to vascular parenchyma transfer cells contiguous with conducting elements of the stele. The occurrence of wall ingrowths adjacent to xylem elements implies that transfer processes occur between vascular transfer cells and xylem. Although reduced, xylem could therefore play a role in transport. Structural evidence obtained in this study supports the role of the roots in absorptive processes and shows pathways available for transport from the water column to the conducting tissues of the root.  相似文献   

18.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the root growth rate relative to aerated conditions. Histochemical studies revealed an early deposition of Casparian bands (CBs) and suberin lamellae (SL) in both the endodermis (EN) and exodermis, and accelerated lignification of stagnant roots. The absolute amounts of suberin, lignin and esterified aromatics (coumaric and ferulic acid) in these barriers were significantly higher in stagnant roots. However, correlative permeability studies revealed that early deposition of barriers in stagnant roots failed to reduce hydraulic conductivity (Lp(r) ) below those of aerated roots. In contrast to Lp(r) , the NaCl permeability (P(sr) ) of stagnant roots was markedly lower than that of aerated roots, as indicated by an increased reflection coefficient (σ(sr) ). In stagnant roots, P(sr) decreased by 60%, while σ(sr) increased by 55%. The stagnant medium differentially affected the Lp(r) and P(sr) of roots, which can be explained in terms of the physical properties of the molecules used and the size of the pores in the apoplast.  相似文献   

20.
On the basis of recent results with young primary maize roots, a model is proposed for the movement of water across roots. It is shown how the complex, 'composite anatomical structure' of roots results in a 'composite transport' of both water and solutes. Parallel apoplastic, symplastic and transcellular pathways play an important role during the passage of water across the different tissues. These are arranged in series within the root cylinder (epidermis, exodermis, central cortex, endodermis, pericycle stelar parenchyma, and tracheary elements). The contribution of these structures to the root's overall radial hydraulic resistance is examined. It is shown that as soon as early metaxylem vessels mature, the axial (longitudinal) hydraulic resistance within the xylem is usually not rate-limiting. According to the model, there is a rapid exchange of water between parallel radial pathways because, in contrast to solutes such as nutrient ions, water permeates cell membranes readily. The roles of apoplastic barriers (Casparian bands and suberin lamellae) in the root's endo- and exodermis are discussed. The model allows for special characteristics of roots such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients indicate some apoplastic by-passes for water within the root cylinder. For a given root, the model explains the large variability in the hydraulic resistance in terms of a dependence of hydraulic conductivity on the nature and intensity of the driving forces involved to move water. By switching the apoplastic path on or off, the model allows for a regulation of water uptake according to the demands from the shoot. At high rates of transpiration, the apoplastic path will be partially used and the hydraulic resistance of the root will be low, allowing for a rapid uptake of water. On the contrary, at low rates of transpiration such as during the night or during stress conditions (drought, high salinity, nutrient deprivation), the apoplastic path will be less used and the hydraulic resistance will be high. The role of water channels (aquaporins) in the transcellular path is in the fine adjustment of water flow or in the regulation of uptake in older, suberized parts of plant roots lacking a substantial apoplastic component. The composite transport model explains how plants are designed to optimize water uptake according to demands from the shoot and how external factors may influence water passage across roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号