首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
A procedure is presented for rapid, quantitative evaluation of cell and nuclear types present in the male gonad of the sea urchin. Vitally stained whole mounts of tissue fragments or dissociated cells are prepared, which reveal detailed 3-dimensional chromatin patterns and enough cytoplasmic features to provide reliable markers for most of the somatic and germ line cell types. Representative cellular morphologies are described. Nuclear volume changes during spermatogenesis are quantified. Spermatid nuclei contain an apparently interconnected network of heterochromatin. Regions relatively devoid of chromatin decrease in size as nuclear condensation proceeds and spherical nuclear shape is maintained. The major decrease in nuclear volume occurs prior to the late spermatid stage. The volume of the spermatozoan nucleus is achieved by the smallest late spermatid nucleus before the change from spherical to conoid morphology. The relationship of this morphological transition to sperm histone dephosphorylation is discussed.  相似文献   

2.
The sperm cells of Guizotia abyssinica were studied during pollen development by light microscopy and at anther dehiscence by transmission electron microscopy. During development, the nuclei change shape from spherical to elongate, thread-like and banded. They are straight or folded, and rarely spiral-shaped when present in the pollen tube. Electron microscopy disclosed that the elongated sperm nuclei are apparently lobate. Intermittently, they are constricted and attenuated or convoluted. The major part of the sperm chromatin is condensed and peripheral, while a minor part is dispersed and central. The scanty sperm cytoplasm contains mitochondria and starch granules. The cytoplasm is mainly restricted to spaces adjoining constricted, lobed and convoluting nuclear sites. Some cytoplasmic patches become embayed in the nucleus at these sites. The periplasm bordering the sperm cells may originate from lucid dilations of the lumen between the plasma membranes of the sperm and vegetative cells. The periplasm is sometimes partially or entirely surrounded by double-membraned endoplasmic reticulum. Folded sperm cells with less coherent periplasm possibly represent a late stage preceding discharge into the pollen tube. The sperm cells always precede the vegetative nucleus into the pollen tube.  相似文献   

3.
During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.  相似文献   

4.
5.
The restructuring of the sperm head has been examined in a caddis fly, Potamophylax rotundipennis (Limnephilidae), using light and electron microscopy. The roughly spherical nuclei of young spermatids are transformed into needle-shaped elements in advanced spermatids. During this process, the nuclei transiently become sickle-shaped. Prominent structural changes occur within the nucleus during spermiogenesis. The chromatin of spherical and slightly elongated nuclei has an amorphous appearance, then coarse granules become apparent, chromatin threads are visible in fully elongated nuclei and finally lamellar elements appear. During the changes in chromatin texture, a dense layer, the chromatin rim, develops transiently. This feature of the chromatin surface is interpreted as the structural expression of exchanges between nucleus and cytoplasm. A microtubular manchette is formed at the cytoplasmic face of the nuclear envelope. Whereas the manchette covers the full perimeter of the nucleus in early stages of elongation, gaps in the palisade of microtubules appear before the nuclear diameter decreases and needle-shaped nuclei develop. It is possible that the intermittent deployment of manchette microtubules is involved in reducing the nuclear diameter towards the end of nuclear elongation. The delayed detachment of the chromatin from the posterior pole of the nucleus, observed at the onset of nuclear clongation, points to local modifications of the nuclear envelope responsible for the connection of the centriole adjunct and the flagellum with the posterior pole of the nucleus.  相似文献   

6.
We describe chromatin condensation and acrosome development during spermiogenesis of Ensis ensis. The overall shape of the mature spermatozoon corresponds to the primitive type. The nucleus is oval and on its superior pole there is an elongated acrosome; the middle piece contains four mitochondria around the centriolar complex. The condensation of the nuclei seems to occur in three steps: first the diameter of chromatin fibers increases slightly from 17 to 20 nm; second, in midspermatids fiber pairs coalesce; and third, the coalescence continues by addition of other fibers until the nuclei become highly compacted. Chromatin changes are related with nuclear protein composition. Small proacrosomal vesicles show two regions of different electron density. At a later stage they fuse to give a single, spherical vesicle in round spermatids, which migrates to the upper pole and transforms into a tapered acrosome (18 μm long) with a central channel filled with finely fibrous material. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The pattern of distribution of telomeric DNA (TTAGGG), 28S rDNA, and 5S rDNA has been studied using fluorescence in situ hybridization (FISH) and primed in situ labelling during spermatogenesis and sperm formation in the filiform spermatozoa of two species of planarians, Dendrocoelum lacteum and Polycelis tenuis (Turbellaria, Plathelminthes). In both species, the positions of FISH signals found with each probe sequence are constant from cell to cell in the nuclei of mature sperm. Chromosome regions containing 5S and 28S rDNA genes are gathered in distinct bundles of spiral form. In early spermatids with roundish nuclei, the sites of a given sequence on different chromosomes remain separate. Centromeres (marked by 5S rDNA) gather into a single cluster in the central region of the slightly elongated sperm nucleus. During spermatid maturation, this cluster migrates to the distal pole of the nucleus. In Polycelis, telomeric sites gather into three distinct clusters at both ends and in the middle of the moderately elongated nucleus. These clusters retain their relative positions as the spermatid matures. All the chromosome ends bearing 28S rDNA gather only into the proximal cluster. Our data suggest that structures in the nucleus selectively recognise chromosome regions containing specific DNA sequences, which helps these regions to find their regular places in the mature sperm nucleus and causes clustering of the sites of these sequences located on different chromosomes. This hypothesis is supported by observations on elongated sperm of other animals in which a correlation exists between ordered arrangement of chromosomes in the mature sperm nucleus and clustering of sites of the same sequence from different chromosomes during spermiogenesis. Received: 15 December 1997; in revised form: 24 March 1998 / Accepted: 14 April 1998  相似文献   

8.
Ge S  Wang S  Kang X  Duan F  Wang Y  Li W  Guo M  Mu S  Zhang Y 《Cytotechnology》2011,63(6):581-598
According to the ultrastructural characteristic observation of the developing male germ cells, spermatogenesis of the crustacean shrimp, Fenneropenaeus chinensis, is classified into spermatogonia, primary spermatocytes, secondary spermatocyte, four stages of spermatids, and mature sperm. The basic protein transition during its spermatogenesis is studied by transmission electron microscopy of ammoniacal silver reaction and immunoelectron microscopical distribution of acetylated histone H4. The results show that basic protein synthesized in cytoplasm of spermatogonia is transferred into the nucleus with deposition on new duplicated DNA. In the spermatocyte stage, some nuclear basic protein combined with RNP is transferred into the cytoplasm and is involved in forming the cytoplasmic vesicle clumps. In the early spermatid, most of the basic protein synthesized in the new spermatid cytoplasm is transferred into the nucleus, and the chromatin condensed gradually, and the rest is shifted into the pre-acrosomal vacuole. In the middle spermatid, the nuclear basic protein linked with DNA is acetylated and transferred into the proacrosomal vacuole and assembled into the acrosomal blastema. At the late spermatid, almost all of the basic protein in the nucleus has been removed into the acrosome. During the stage from late spermatid to mature sperm, some de novo basic proteins synthesized in the cytoplasm belt transfer into the nucleus without a membrane and almost all deposit in the periphery to form a supercoating. The remnant histone H4 accompanied by chromatin fibers is acetylated in the center of the nucleus, leading to relaxed DNA and activated genes making the nucleus non-condensed.  相似文献   

9.
Changes in nuclear structure during eupyrene spermatogenesis of Murex brandaris have been studied using light and electron microscopy. In the first phases, spermatogonia show round nuclei, with several electrodense masses of chromatin and a thin layer of heterochromatin associated with the nuclear membrane. Primary spermatocytes possess larger nucleii, with less condensed chromatin, and the synaptonemal complexes are apparent. During spermiogenesis, chromatin becomes lamellar, and the nucleus twists about its principal axis while it elongates. The nuclear twisting is accompanied by a progressive chromatin condensation, which causes a highly electrodense nucleus at the end of the process.  相似文献   

10.
Zona-free oocytes of the mouse were inseminated at prometaphase I or metaphase I of meiotic maturation in vitro, and the behavior of the sperm nuclei within the oocyte cytoplasm was examined. If the oocytes were penetrated by up to three sperm, maturation continued during subsequent incubation and became arrested at metaphase II. Meanwhile, each sperm nucleus underwent the following changes. First, the chromatin became slightly dispersed. By 6 h after insemination, this dispersed chromatin had become coalesced into a small mass, from which short chromosomal arms later became projected. Between 12 and 18 h after insemination, each mass of chromatin became resolved into 20 discrete metaphase chromosomes. In contrast, if oocytes were penetrated by four to six sperm, oocyte meiosis was arrested at metaphase I, and each sperm nucleus was transformed into a small mass of chromatin rather than into metaphase chromosomes. If oocytes were penetrated by more than six sperm, the maternal chromosomes became either decondensed or pycnotic, and the sperm nuclei were transformed into larger masses of chromatin. As control experiments, immature and fully mature metaphase II oocytes were inseminated. In the immature oocytes, which were kept immature by exposure to dibutyryl cyclic AMP, no morphological changes in the sperm nucleus were observed. On the other hand, in the fully mature oocytes, which were activated by sperm penetration, the sperm nucleus was transformed into the male pronucleus. Therefore, the cytoplasm of the maturing oocyte develops an activity that can transform the highly condensed chromatin of the sperm into metaphase chromosomes. However, the capacity of an oocyte is limited, such that it can transform a maximum of three sperm nuclei into metaphase chromosomes. Furthermore, the presence of more than six sperm causes a loss of the ability of the oocyte to maintain the maternal chromosomes in a metaphase state.  相似文献   

11.
应用透射电镜(TEM)技术研究了日本沼虾精子发生过程中细胞核的形态变异。生精细胞的核经历了由圆形或椭圆形变为浅碟状的一系列变化过程;其核膜由原来的完整变为不完整,成熟精子仅在精子尾部具有核膜;核内染色质由松散逐渐聚合分化,在成熟精子核内形成了泡状和丝状两种形态的核物质。精子具备泡状和丝状两种核物质是日本沼虾的重要特征之一。精核的形态可以作为十足类甲壳动物的重要分类依据;研究精子发生过程中细胞核的形  相似文献   

12.
13.
Y. Soffer  L. M. Lewin 《Andrologie》1999,9(2):261-271
During spermatozogenesis, sperm nucleosomal DNA type, linked to histones, is transformed into a special form bound to small basic proteins, the protamines. This process allows sperm nucleus to condense and mature. This maturation process is achieved in the epididymis. When a spermatozoon enters an oocyte, protamines are released and replaced by histones, enabling the sperm nucleus to expand into a male pronucleus. Flow cytometry using acridine orange staining is an objective and quantitative technique well-adapted for the investigation of the chromatin structure at the level of each spermatozoon, as well as the whole ejaculate. This technique allows tracing the young sperm cell nuclei from the diploid stage, through tetraploid until the final haploid stage in mature spermatozoa. It allows also following the sperm maturation process during the epididymal transit. It detects various sperm chromatin condensation defects, hypocondensation, hypercondensation or other aberrations, as well as decondensation defects by using an in vitro assay. These defects may impair sperm fertilizing ability, even after sperm microinjection into the oocyte. Better understanding of sperm chromatin integrity and stability prerequisites might help us improving the quality of various technologies used in assisted medical procreation.  相似文献   

14.
Light and transmission electron microscopy of the spermatozoa and spermatogenesis of 16 species (in three genera, Patella, Helcion, Cellana) of patellid limpet have shown that head lengths of the sperm range from 3 to 13 μm, and each species has a sperm with a unique morphology, indicating that the spermatozoa can be used as a taxonomic character. Although spermatozoon structure is species specific, five types can be recognized, based on the size, shape, and structure of the nucleus and acrosome. The occurrence of five morphological types of sperm, one of which (Cellana capensis) is particularly different from other patellids, suggests that the taxonomy of the family Patellidae be re-examined. The morphological changes that occur during spermatogenesis are very similar in all species, although two patterns of chromatin condensation are found. Those species with sperm that have short squat nuclei (length:breadth < 3.5:1) have a granular pattern of condensation. Species with sperm that have more elongate nuclei (length:breadth > 5:1) have an initial granular phase followed by the formation of chromatin fibrils. These fibrils become organized along the long axis of the elongating nucleus. The absence of a manchette suggests that nuclear elongation is brought about from within the nucleus.  相似文献   

15.
Polymorphism of sperm is considered to be significant for the reproductive strategy in some animal species. The phenomenon is thought to occur in the species-specific stage of spermatogenesis, but how the identical germ cells are differentiated towards polymorphic sperm remains unknown. We here performed a germ cell culture in the cottoid fish, Hemilepidotus gilberti, whose sperm exhibit dimorphism with fertilizable eusperm and unfertilizable parasperm. In the culture, germ cells, which were obtained with an identical morphology, a spherical shape of 5-7 microm in diameter, differentiated into smaller spherical cells with a single nucleus, a moving flagellum and localized mitochondria. In addition, large retroflex-shaped cells with two elongated nuclei were also observed in the cell culture. Germ cells that had each morphological feature were histologically also observed in some cysts of the spermatogenetic testis, suggesting that the former type of cell corresponded to developing eusperm and the latter corresponded to developing parasperm. When BrdU was incorporated into germ cells in the culture, it was detected in both cells with eusperm-like and those with parasperm-like morphologies. These findings suggest that DNA-duplicating spermatocytes are potent to autonomously progress a part of spermatogenesis to form dimorphic sperm.  相似文献   

16.
Changes in the morphology of the sperm nucleus in the egg cytoplasm are mong the immediate events in nucleocytoplasmic interactions during early embryogenesis. Soon after its entrance into the egg cytoplasm, the sperm nucleus of various organisms increases in size with the transformation of condensed chromatin to a diffuse state, resembling the chromatin of an interphase nucleus (2, 13, 15, 16). This is followed by a close association or fusion of male and female pronuclei (2, 13, 15, 16). Cytoplasmic influences on nuclear morphology have also been demonstrated clearly in nuclear transplantation and cell fusion studies (10, 11). Reactivation of the nucleus, such as the transplanted brain nucleus in Xenopus egg cytoplasm or the hen erythrocyte nucleus in interphase cytoplasm of HeLa cells, is accompanied by nuclear enlargement and chromatin dispersion (10, 11). However, premature mitotic-like chromosome condensation takes place in the nuclei of sperm or interphase cells fused with mitotic cells (9, 12). Thus, chromosome dispersion and condensation seem to depend on the state of the cytoplasm in which the nucleus is present. These observations imply that the initial morphological changes in the sperm nucleus after fertilization may very well be dependent on the state of maturation of eggs at the time of sperm entry. Unfertilized eggs of Urechis caupo, a marine echiuroid worm, are stored at the diakinesis stage. These eggs complete maturation division after insemination and this is followed by fusion of male and female pronuclei (5, 8). Therefore, Urechis caupo is a suitable organism in which to study the response of the sperm nucleus to the changing state of the egg cytoplasm during and after postfertilization maturation division.  相似文献   

17.
No acid phosphatase activity was observed in the mature embryo sac of wheat (Triticum aestivum) except the chalazal cytoplasm Of the central cell before fertilization. During fertilization, acid phosphataseactivity was observed in the following loci: part of chromatin of the egg nucleus and most of the mitochondria in the egg cytoplasm; the perinuclear spaces of the egg and sperm nuclei at the fusion of the egg and sperm nuclei; the chalazal cytoplasm and some vacuoles of the degenerated synergid; two sperm nuclei within the cytoplasm of female cells; the cell wall of each cell of the embryo sac and that of the nucellar cells surrounding the embryo sac. No acid phosphatase was observed in the two-celled proembryo. Dense enzyme reaction product was localized in the chromatin of the free nuclei at early stage of the endosperm. The characteristic of acid phosphatase distribution during fertilization may be associated with the physiological change of the egg Cell, the reorganization of mitochondria in the egg cell cytoplasm, the degeneration of one of the two synergids, the physiological state of the sperm nuclei and the nuclear membrane fusion of the egg and sperm nuclei.  相似文献   

18.
通过透射和扫描电镜观察了白肛海地瓜(Acaudina leucoprocta)的精子发生过程及其形态结构,揭示了白肛海地瓜精子发生时期一系列变化,其精子发生分为精原细胞、初级精母细胞、次级精母细胞、精细胞、成熟精子5个时期。精原细胞体积最大。精母细胞染色质开始凝集。精细胞前顶体颗粒形成。白肛海地瓜成熟精子的超微结构为原生型,由头部、中部、尾部组成,头部圆形,最前端为顶体,核染色质凝集成团块状,中部是线粒体和中心粒复合体融合成1个超大结构,尾部长约60μm,尾部鞭毛横切面为典型的"9+2"型结构。  相似文献   

19.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

20.
The ultrastructural study of chromatin condensation simultaneously with the evolution of the perinuclear organelles was conducted in the spermatids and epididymal and ejaculated spermatozoa of man with the aid of the “en bloc” alcoholic PTA staining and the EDTA regressive method. The round nuclei of young spermatids (steps 1, 2) were characterized by the persistence of nucleoli that were PTA positive, and the presence of a subacrosomal layer of well-stained peripheral chromatin. In the beginning of the phase of nuclear elongation (step 3), the central chromatin also became dense, like the peripheral chromatin, while the nuclear ring and the associated manchette and the two anlages of the postacrosomal dense lamina and the posterior ring appeared. During steps 4 and 5, the sliding of the nuclear ring and the manchette, the growth of the postacrosomal dense lamina, and the progression of the posterior ring towards the base of the nucleus were seen along with structural and cytochemical modifications of the chromatin. In the flattened nuclei of step 4 spermatids, coinciding with the loss of the nucleolar components, the chromatin achieved maximum compactness in the entire nucleus and was PTA positive. In the spermatids of step 5, the disappearance of peripheral dense chromatin and the specific staining of the chromatin granules marked the beginning of the second stage of transformation of the basic nucleo-proteins. The condensed nuclei of the mature spermatids were partially stained by PTA in step 6 and totally unstained in step 7. The PTA staining revealed the persistence of PTA-positive chromatin areas in the nuclei of certain spermatids otherwise mature. The morphological aspect of the chromatin then remained the same in the nuclei of epididymal and ejaculated spermatozoa. These observations suggest that in man, as in other mammals studied, new proteins accumulate in the elongating nuclei of spermatids and are replaced at the phase of maturation by sperm-specific nucleoproteins. The defects in condensation of the chromatin that occur during spermiogenesis could be related to the modalities of accumulation of intermediate nucleoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号