首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present investigation focuses on the synthesis and application of a cross-linking agent that is compatible with the solubility characteristics of chitosan. A water-soluble, blocked-diisocyanate was prepared as a bisulfite adduct to 1,6-hexamethylene diisocyanate, which proved to be stable for several weeks in aqueous, acidic chitosan solutions at room temperature. Thermal cross-linking of chitosan as cast, dried films was investigated by varying the NCO/NH(2) ratio from 0.0 to 1.2. Spectroscopic (IR), thermal (TGA), swelling, and structural (WAXD) studies indicated that chitosan was cross-linked in a concentration-dependent manner under mild thermal conditions: 60 degrees C for 24 h. Cross-linking inefficiency was concluded to be due to lack of mobility of the reacting species in the solid state. In a preliminary study, the enzymatic degradation with Chitinase (E. C. 3.2.1.14) from Streptomyces griseus was found to be the greatest for non-crosslinked chitosan, followed by chitin, and then by cross-linked samples.  相似文献   

2.
Using eucollagen solutions from ox hide, we cast collagen films to assess the influence of calcium and silica on the reconstitution of the fibrous structure of collagen. The tensile strength and the breaking elongation of the reconstituted collagen films were measured and analysed. Significant differences were observed between reconstituted collagen films with and without calcium and silica. The breaking elongation of the films obtained in the presence of silica was significantly greater, and the degradation was lower than other films of reconstituted collagen. Collagen and chitosan do not exist together as blends in nature, but the specific properties of each may be used to produce in biomimetic way man-made blends with biomedical applications, that confer unique structural, mechanical (detail) and in vivo properties.  相似文献   

3.
Novel cross-linked chitosan-based films were prepared using the solution casting technique. A naturally occurring and nontoxic cross-linking agent, genipin, was used to form the chitosan and chitosan/poly(ethylene oxide) (PEO) blend networks, where two types of PEO were used, one with a molecular weight of 20 000 g/mol (HPEO) and the other of 600 g/mol (LPEO). Genipin is used in traditional Chinese medicine and extracted from gardenia fruit. Importantly, it overcomes the problem of physiological toxicity inherent in the use of some common synthetic chemicals as cross-linking agents. The mechanical properties and the stability in water of cross-linked and un-crosslinked chitosan and chitosan/PEO blend films were investigated. It was shown that, compared to the transparent yellow, un-cross-linked chitosan/PEO blend films, the genipin-cross-linked chitosan-based film, blue in color, was more elastic, was more stable, and had better mechanical properties. Genipin-cross-linking produced chitosan networks that were insoluble in acidic and alkaline solutions but were able to swell in these aqueous media. The swelling characteristics of the films exhibit sensitivity to the environmental pH and temperature. The surface properties of the films were also examined by contact angle measurements using water and mixtures of water/ethanol. The results showed that, with the one exception of cross-linked pure chitosan in 100% water, the cross-linked chitosan and chitosan/PEO blends were more hydrophobic than un-crosslinked ones.  相似文献   

4.
Cross-linking chitosan nanofibers   总被引:1,自引:0,他引:1  
In the present study, we have electrospun various grades of chitosan and cross-linked them using a novel method involving glutaraldehyde (GA) vapor, utilizing a Schiff base imine functionality. Chemical, structural, and mechanical analyses have been conducted by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Kawabata microtensile testing, respectively. Additionally, the solubilities of the as-spun and cross-linked chitosan mats have been evaluated;solubility was greatly improved after cross-linking. SEM images displayed evidence that unfiltered low, medium, and high molecular weight chitosans, as well as practical-grade chitosan, can be electrospun into nanofibrous mats. The as-spun medium molecular weight chitosan nanofibers have a Young's modulus of 154.9 +/- 40.0 MPa and display a pseudo-yield point that arose due to the transition from the pulling of a fibrous mat with high cohesive strength to the sliding and elongation of fibers. As-spun mats were highly soluble in acidic and aqueous solutions. After cross-linking, the medium molecular weight fibers increased in diameter by an average of 161 nm, have a decreased Young's modulus of 150.8 +/- 43.6 MPa, and were insoluble in basic, acidic, and aqueous solutions. Though the extent to which GA penetrates into the chitosan fibers is currently unknown, it is evident that the cross-linking resulted in increased brittleness, a color change, and the restriction of fiber sliding that resulted in the loss of a pseudo-yield point.  相似文献   

5.
The influence of the conditions of the formation of genipin cross-linked chitosan cryostructurates on the porous morphology and physicochemical properties of these cryostructurates and on the possibility of their use as biopolymer 3D scaffolds for tissue engineering was studied. The chitosan cryostructurates were obtained by freeze-drying a chitosan acetate solution, treating the resulting sponge with an alcohol solution of ammonia to transform the polyaminosaccharide from a salt into a chitosan-base, and then cross-linking the polymer with genipin (the molar ratios of genipin to the number of chitosan amino groups were 0.05, 0.033, and 0.02, respectively). The pore sizes, water-holding capacity, and in vitro biodegradation rate of the cryostructurates were shown to depend on the aforementioned ratio. The properties of the prepared chitosan cryostructurates, the hydrogels formed by chitosan cross-linking with genipin at positive temperatures, and the films cast from genipin-containing chitosan solutions after solvent evaporation were studied and compared. The biocompatibility of the obtained macroporous sponge materials was demonstrated using L929 mouse fibroblasts. Confocal laser microscopy showed that the cells in all of the 3D scaffolds obtained were evenly distributed; they grew and proliferated when cultured in vitro for seven days.  相似文献   

6.
The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.  相似文献   

7.
Chitosan is a promising biomaterial for biomedical applications and is currently applied as wound dressings. While chitosan solutions demonstrate strong bactericidal activity against a range of medically important bacteria, the study here reports a loss of this beneficial property in thin films cast from the same solutions. Chitosan films (20 μm) showed no inhibitory effects against Escherichia coli, Staphylococcus aureus or S. epidermidis species. In contrast, solutions used to prepare the films showed almost complete inhibition (~98 ± 2%) when tested on bacterial lawns and in liquid cultures. Increased acidity of the chitosan solutions (pH 5) was shown to promote the bactericidal effects of this biopolymer. The concept that devices fabricated from chitosan have an inherent antimicrobial activity is suggested as an important misconception.  相似文献   

8.
《Carbohydrate polymers》2013,91(1):236-243
The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films.  相似文献   

9.
A novel method is described to synthesize quaternary salts of chitosan with dimethylsulfate and subsequently cast films. In an attempt to improve both mechanical and hydrophobic characteristics, the chitosan was previously modified by N-alkylation, introducing 4, 8 and 12 carbons moieties into the polymeric chain. Analysis by FTIR and solid-state CP-MAS (13)C NMR spectroscopy confirmed the success of both alkylation and quaternization processes. The average degree of quaternization of these N-methylated derivatives was calculated to be 35%. DMA measurements indicated that chitosan and its derivative films are typically brittle materials, exhibiting similar non-linear viscoelastic behaviors. The films of unmodified chitosan have a very small strain (approximately 2.8%), though they were the most resistant films (Young's modulus=2283 MPa; tensile strength >44.0 MPa). In general, the alkyl-chitosan derivatives appear to be more plastic than chitosan films but less resistant, e.g., for butyl chitosan: maximum strain=13.1%; tensile strength=13.4 MPa and Young's modulus=171 MPa. Conversely the quaternization reaction increased the hardness of the parent sample, viz. for quaternary salt of dodecyl chitosan: maximum strain=2.6%; tensile strength=38.3 MPa and Young's modulus=1792 MPa.  相似文献   

10.
Antimicrobial films produced from chitosan.   总被引:4,自引:0,他引:4  
Antimicrobial films were prepared by dissolving chitosan into hydrochloric, formic, acetic, lactic and citric acid solutions. Below 40 degrees C, the counter ions could be classified into two groups based on their effect on zero-shear-rate viscosity in 2% solutions of organic acids. Chloride and citrate produced solutions with much lower viscosities than formate, acetate and lactate. At higher temperatures, these differences vanished, and the activation energies of viscous flow were all similar between 40 and 60 degrees C. Films prepared from these solutions were evaluated in tension for Young's modulus, stress and elongation at yield and break points. Films made from hydrochloric, formic and acetic acids were hard and brittle, whereas those from lactic and citric acids were soft and could be stretched. Good correlation was found between Young's modulus and volume of the counter ion. Film properties are essentially governed by the volume of the counter ion and not by the interactions between this counter ion and the macromolecule. Results suggest that acetate has the maximum molecular volume above which the film strength decreases very rapidly.  相似文献   

11.
The ability to control conformational properties of polypeptides in their films is of considerable interest for many possible applications of these materials. By rational choice of the solvent system for film fabrication, control over the conformation of the main chain, the intermolecular hydrogen bonding in the side chain is easily achieved in poly(alpha-L-glutamic acid) (PLGA) thin films. The spectral data from circular dichromism (CD), FT-IR, and solid state (13)C NMR spectroscopies suggest that the beta-sheet conformation is dominant in PLGA films cast from trifluoroacetic acid (TFA) solution, whereas the right-handed alpha-helix is dominant in those cast from pyridine or DMF solution. In comparison with films cast from TFA solutions, the films fabricated from pyridine or DMF solutions exhibit strong intermolecular hydrogen bondings between -COOH groups and have a more ordered arrangement of side chains. Moreover, the extent of alpha-helix conformation of the PLGA backbone in films cast from pyridine or DMF solution is several times higher than that observed in the PLGA powder precipitated from aqueous solution at pH 4. All spectroscopic studies indicate clearly that the solvents (used for casting these films) play a crucial role in directing the organization of PLGA in these thin films.  相似文献   

12.
This study evaluated individual contributions of dissolving acids (acetic acid, lactic acid, and hydrochloric acid) or acid solubilized chitosan to the antibacterial activity against Listeria innocua and Escherichia coli as solutions and dried films. Solutions containing chitosan showed significantly (P?<?0.05) different inhibitory activity (measured as percentage of inhibition (PI), in percent) against L. innocua and E. coli, compared to equivalent acid solutions. This increase was calculated as additional inhibition (AI, in percent), which could be as high as 65 % in solutions containing 300–320 kDa chitosan depending on the acid type, bacterial species, and the chitosan form (α or β). Solutions containing 4–5 kDa chitosan had lower AI and showed much greater variability among the different chitosan forms, acid types, and bacterial species. Higher molecular weight (Mw) chitosan also showed significantly higher levels of adsorption to bacterial cells than that of lower Mw samples, suggesting that the observed increase in inhibition was the result of surface phenomena. The contribution of acids to the antibacterial activity of chitosan films was assessed by comparing non-rinsed and rinsed films (rinsed in the appropriate broth to remove residual acids and active fragments formed on the dried film). Rinsing β-chitosan films has reduced PI by as much as 28 % compared with non-rinsed films, indicating that part of the antibacterial activity of chitosan films is due to the presence of soluble acid compounds and/or other active fragments. Overall, both acidulant and chitosan were found to contribute to the antibacterial activity of acid solubilized α- and β-chitosan, with the exact antibacterial activity of chitosan varying based on the solution and film properties, suggesting a complex interaction.  相似文献   

13.
Films formed by blending of two polymers usually have modified physical and mechanical properties compared to films made of the individual components. Our preliminary studies indicated that incorporation of chitosan in polyethylene oxide (PEO) films may provide additional functionality to the PEO films and may decrease their tendency to spherulitic crystallization. The objective of this study was to determine the correlation between chitosan/PEO weight ratio and the physical, mechanical, and antibacterial properties of corresponding films. Films with chitosan/PEO weight ratios from 100/0 to 50/50 in 10% increments were characterized by measuring thickness, puncture strength (PS), tensile strength (TS), elongation at break (%E), water vapor permeability (WVP), and water solubility (WS). Additionally, the films were examined by polarized microscopy, wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) spectroscopy, and their antibacterial properties were tested against Escherichia coli. The chitosan fraction contributes to antimicrobial effect of the films, decreases tendency to spherulitic crystallization of PEO, and enhances puncture and tensile strength of the films, while addition of the PEO results in thinner films with lower water vapor permeability. Films with 90/10 blend ratio of chitosan/PEO showed the most satisfactory PS, TS, %E, and antibacterial properties of all tested ratios.  相似文献   

14.
Bacterial cellulose-chitosan (BC-C) films were developed by immersing purified BC pellicles in 1.5 ~ 2.0% (w/v) acetic acid solutions containing chitosan of varying molecular weights. Effects of different molecular weight of chitosan on physical, biological and antimicrobial properties of the composite films were investigated. The cumulative chitosan absorption capacities with Mw of 141,000, 199,000, and 263,000 were 38.43, 24.65, and 23.89 mg/cm3 of dry BC film, respectively. The cumulative release profiles of chitosan from the films strongly depended on molecular weight of chitosan and pH of solution. The order of release of chitosan from the BC-C films was dependent on molecular weight as follows: Mw 141,000 > Mw 199,000 > Mw 263,000. All BC-C films showed the antimicrobial abilities against Staphylococcus aureus and Aspergillus niger but had no inhibitory effect on the growth of Escherichia coli. The BC-C films supported for adhesion, spreading and proliferation of both human skin keratinocytes and fibroblasts. The antibacterial activity against S. aureus of the BC-C with the highest Mw chitosan (263,000) was higher than those of the others. On the other hand, the BC-C films with the lowest Mw chitosan (141,000) promoted the growth of human skin cells more than those of the others.  相似文献   

15.
The surface structure of films prepared by casting aqueous solutions of mixtures of water soluble chitosan (WSC) and amylose as well as a fully deacetylated chitosan was studied. Zeta potential measurements indicated that the surface of WSC and fully deacetylated chitosan films is positively charged but very weakly, whereas, a film of amylose blended with WSC exhibited an obvious positive charge. X-ray photoelectron spectra of these films suggest that less amino groups are exposed on the surface of WSC and fully deacetylated chitosan films, whereas, more amino groups are exposed on the surface of a WSC film blended with amylose. A sheet structure in which free amino groups are less exposed on the surface of the film of WSC or fully deacetylated chitosan is proposed. This accounts for the loss of antibacterial activity of chitosan on the WSC film surface. When blended with amylose, the morphology of the film may be disrupted, resulting in strong antibacterial properties.  相似文献   

16.
The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA?=?45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA?=?2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA?=?2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.  相似文献   

17.
Specialised blend films have been prepared by blending 1% w/v konjac glucomannan aqueous with 1% w/v chitosan solution in acetate solution and drying at room temperature for 24 h. The condensed state structure and miscibility of the blend films were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction. The results indicated that the blend film obtained from an 80/20 mixing ratio of konjac glucomannan and chitosan derivate showed the highest miscibility and blend homogeneity, and that strong intermolecular hydrogen bonds took place between the amino groups of chitosan and the hydroxyl groups of konjac glucomannan; thus the tensile strength also achieved its maximum in this ratio. The cell morphologies on the pure and blend films were examined by light microscopy and cell viability was studied by using MTT assay. The results showed that the particular blend film was more suitable for the cell culture than the pure konjac glucomannan film, and that the cells cultured on this blend film had greater spreading coefficients than that of the pure konjac glucomannan film. As a result of the good mechanical properties, miscibility and biocompatibility, the blend film is a promising biomaterial matrix.  相似文献   

18.
Alkaline chitosan solutions   总被引:1,自引:0,他引:1  
Rigid and transparent hydrogels were obtained upon pouring chitosan salt solutions into saturated ammonium hydrogen carbonate. Incubation at 20 degrees C for 5 days yielded chitosan carbamate ammonium salt, Chit-NHCO(2)(-)NH(4)(+) a chemical species that either by hydrolysis or by thermal treatment decomposed to restore chitosan in free amine form. Chitosans of different degrees of acetylation, molecular sizes and origins (squid and crustaceans) were used as hydrochloride, acetate, glycolate, citrate and lactate salts. Their hydrogels obtained in ammonium hydrogen carbonate yielded chitosan solutions at pH values as high as 9.6, from which microspheres of regenerated chitosans were obtained upon spray-drying. These materials had a modest degree of crystallinity depending on the partial acylation that took place at the sprayer temperature (168 degrees C). Citrate could cross-link chitosan and impart insolubility to the microspheres. Chloride on the contrary permitted to prepare microspheres of chitosan in free amine form. By the NH(4)HCO(3) treatment, the cationicity of chitosan could be reversibly masked in view of mixing chitosan with alginate in equimolar ratio without coacervation. The clear and poorly viscous solutions of mixed chitosan carbamate and alginate were spray-dried at 115 degrees C to manufacture chitosan-alginate microspheres having prevailing diameter approx 2 micron.  相似文献   

19.
Wheat gluten films were prepared by thermo-pressing, and their mechanical properties were compared to those of cast films. The stress-strain relationship was established for films with various amounts of glycerol. Both relationships were quite different, revealing a different network organization. Thermo-pressed films presented higher stress values than cast films, but the effect of the glycerol amount was similar in both cases, an increase of the glycerol amount leading to a decrease of both films stress. The glycerol influence on the strain at break of thermo-pressed films was very limited, with strain values reaching a maximum around 200%. The role of disulfide bridges on themomoulded films mechanical properties was investigated, and it was shown that some rearrangements and a significative protein insolubilization occurred during the process. The effective flow porosity of the protein network for thermo-pressed films was estimated by water capillary rise measurements to about 7%. Scanning electron microscopy was used to obtain some information about the microstructure of both cast and thermo-pressed films.  相似文献   

20.
Observation of random copolypeptides of γ-benzyl-l-glutamate with l-phenylalanine, l-valine and l-alanine was carried out in an electron microscope with samples cast from dilute solution. The relationship between the morphology and the molecular conformation in solution was studied with mixed solvents composed of chloroform and trifluoroacetic acid; these show a preference for α-helix and random coil, respectively. From the solutions in which molecules take α-helical conformation, fibrous films of nematic structure were formed. From random coil solutions discrete precipitates with folded molecules such as lamellar single crystals, piles of lamellae and structureless particles were formed. A copolypeptide containing l-valine in sufficiently large quantity to form β-structure also showed a variation in morphology with solvent, from films to discrete precipitates. It is suggested that the change in stiffness of the molecules contributes to the morphological variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号