首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(5):531-532
The dysregulation of mitochondrial function has been implicated in the pathogenesis of Parkinson disease.

Mutations in the parkin, PINK1 and DJ-1 genes all result in recessive parkinsonism. Although the protein products of these genes have not been fully characterized, it has been established that all three contribute to the maintenance of mitochondrial function. PINK1 and parkin act in a common pathway to regulate the selective autophagic removal of depolarized mitochondria, but the relationship between DJ-1 and PINK1- and/or parkin-mediated effects on mitochondria and autophagy is less clear. We have shown that loss of DJ-1 leads to mitochondrial phenotypes including reduced membrane potential, increased fragmentation and accumulation of autophagic markers. Supplementing DJ-1-deficient cells with glutathione reverses both mitochondrial and autophagic changes suggesting that DJ-1 may act to maintain mitochondrial function during oxidative stress and thereby alter mitochondrial dynamics and autophagy indirectly.  相似文献   

2.
3.
Mutations in DJ-1 gene have been linked to autosomal recessive early onset parkinsonism (AR-EOP). Although the mechanism of neuronal cell death due to DJ-1 mutation has not been fully elucidated, loss of DJ-1 function was considered to cause the phenotype. Here, we demonstrated that the down regulation of endogenous DJ-1 of the neuronal cell line by siRNA enhanced the cell death which was induced by oxidative stress, ER stress, and proteasome inhibition, but not by pro-apoptotic stimulus. The cell death with hydrogen peroxide was dramatically rescued by over-expression of wild-type DJ-1, but not by that of L166P mutant DJ-1. Furthermore, DJ-1 rescued the cell death caused by over-expression of Pael receptor, which was a substrate of Parkin, another gene product for autosomal recessive juvenile parkinsonism. These results suggest that loss of protective activity of DJ-1 from neuro-toxicity induced by these stresses contributes to neuronal cell death in AR-EOP with mutant DJ-1.  相似文献   

4.
DJ-1 is a novel oncogene and causative gene for familial form of the Parkinson's disease (PD). DJ-1 has been shown to play a role in anti-oxidative stress by eliminating reactive oxygen species (ROS). The onset of PD is thought to be caused by oxidative stress and mitochondrial injury, which leads to protein aggregation that results in neuronal cell death. However, the mechanism by which DJ-1 triggers the onset of PD is still not clear. In this study, we analyzed association and localization of DJ-1 and its mutants with various chaperones. The results showed that DJ-1 and its mutants were associated with Hsp70, CHIP and mtHsp70/Grp75, a mitochondria-resident Hsp70, and that L166P and M26I mutants found in PD patients were strongly associated with Hsp70 and CHIP compared to wild-type and other DJ-1 mutants. DJ-1 and its mutants were colocalized with Hsp70 and CHIP in cells. Furthermore, association and colocalization of wildtype DJ-1 with mtHsp70 in mitochondria were found to be enhanced by treatment of cells with H2O2. These results suggest that translocation of DJ-1 to mitochondria after oxidative stress is carried out in association with chaperones.  相似文献   

5.
6.
The generation of reactive oxygen species (ROS), a byproduct of aerobic energy metabolism, is maintained at physiological levels by the activity of antioxidant components. Insufficiently opposed ROS results in oxidative stress characterized by altered mitochondrial function, decreased protein activity, damage to nucleic acids, and induction of apoptosis. Elevated levels of inadequately opposed ROS induce autophagy, a major intracellular pathway that sequesters and removes damaged macromolecules and organelles. In early pregnancy, autophagy induction preserves trophoblast function in the low oxygen and nutrient placental environment. Inadequate regulation of the ROS-autophagy axis leads to abnormal autophagy activity and contributes to the development of preeclampsia and intrauterine growth restriction. ROS-autophagy interactions are altered at the end of gestation and participate in the initiation of parturition at term. The induction of high levels of ROS coupled with a failure to induce a corresponding increase in autophagy results in the triggering of preterm labor and delivery.  相似文献   

7.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

8.
The loss of dopaminergic neurons in the substantia nigra is the pathological hallmark of Parkinson's disease (PD). While the etiology of sporadic PD remains elusive, an inherited form of early-onset familial PD is linked to mutations of DJ-1. To understand the biological function of DJ-1 and its relevance to the pathogenesis of PD, we investigated the function of DJ-1 using Drosophila. Drosophila possesses two homologs of human DJ-1: DJ-1alpha and DJ-1beta. We found that DJ-1alpha is expressed predominantly in the testis, while DJ-1beta is ubiquitously present in most tissues, resembling the expression pattern of human DJ-1. Loss-of-function DJ-1beta mutants demonstrated an extended survival of dopaminergic neurons and resistance to paraquat stress, but showed acute sensitivity to hydrogen peroxide treatment. We showed a compensatory upregulation of DJ-1alpha expression in the brain of the DJ-1beta mutant and demonstrated that overexpression of DJ-1alpha in dopaminergic neurons is sufficient to confer protection against paraquat insult. These results suggest that Drosophila homologs of DJ-1 play critical roles in the survival of dopaminergic neurons and response to oxidative stress.  相似文献   

9.
Human studies have shown high-intensity interval training (HIIT) has beneficial cardiovascular effects and is typically more time-efficient compared with traditional endurance exercise. The main goal of this study is to show the potential molecular and functional cardiovascular benefits of HIIT compared with endurance training (ET). Three groups of mice were used including sedentary-control, ET mice, and HIIT mice groups. Results indicated ejection fraction was increased in HIIT compared with ET while fractional shortening was increased in the HIIT group compared with both groups. Blood flow of the abdominal aorta was increased in both exercise groups compared with control. Increases in cross-sectional area and mitochondrial and antioxidative markers in HIIT compared with control were observed, along with several microRNAs. These findings indicate HIIT has specific cardiac-protective effects and may be a viable alternative to traditional ET as a cardiovascular preventative medicine intervention.  相似文献   

10.
11.
The oxidative stress theory and its correlate the mitochondrial theory of aging are among the most studied and widely accepted of all hypotheses of the mechanism of aging. To date, most of the supporting evidence for these theories has come from investigations using common model organisms such as Caenorhabditis elegans, Drosophila melanogaster, and laboratory rodents. However, comparative data from a wide range of endotherms provide equivocal support as to whether oxidative stress is merely a correlate, rather than a determinant, of species' maximum lifespan. The great majority of studies in this area have been devoted to the relationship between reactive oxygen species and maximal longevity in young adult organisms, with little emphasis on mitochondrial respiratory efficiency, age-related alterations in mitochondrial physiology or oxidative damage. The advantage of studying a broader spectrum of species is the broad range of virtually every biological phenotype/trait, such as lifespan, body weight and metabolic rate. Here we summarize the results from a number of comparative studies in an effort to correlate oxidant production and oxidative damage among many species with their maximal lifespan and briefly discuss the pitfalls and limitations. Based on current information, it is not possible to accept or dispute the oxidative stress theory of aging, nor can we exclude the possibility that private mechanisms might offer an explanation for the longevity of exceptionally long-lived animal models. Thus, there is need for more thorough and controlled investigations with more unconventional animal models for a deeper understanding of the role of oxidative stress in longevity.  相似文献   

12.
13.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

14.
15.
HL-1 cardiomyocytes were subjected to simulated hypoxia, in the presence of cobalt chloride, which resulted in reduction of cell viability and induction of DNA laddering, indicating the activation of the apoptotic cascade. In the presence of trolox, ascorbic acid, melatonin and the hybrid compound of trolox and lipoic acid (LaT 3a), cell viability was increased, with LaT 3a exhibiting the best effect. Antioxidant treatment restored ATP levels, abolished laddering of DNA, abrogated MPTP opening, Bax translocation to the mitochondria and cytochrome c release to the cytoplasm. Moreover, severe hypoxia, was found to destabilize hypoxia inducible factor-1α (Hif-1α) mRNA. Reduction of oxidative stress attenuated this effect, implying a possible anti-apoptotic action of the master regulator of hypoxia response. Our data suggest that antioxidants can maintain cell function and survival by inhibiting the mitochondrial apoptotic pathway and stabilizing Hif-1α.  相似文献   

16.
HL-1 cardiomyocytes were subjected to simulated hypoxia, in the presence of cobalt chloride, which resulted in reduction of cell viability and induction of DNA laddering, indicating the activation of the apoptotic cascade. In the presence of trolox, ascorbic acid, melatonin and the hybrid compound of trolox and lipoic acid (LaT 3a), cell viability was increased, with LaT 3a exhibiting the best effect. Antioxidant treatment restored ATP levels, abolished laddering of DNA, abrogated MPTP opening, Bax translocation to the mitochondria and cytochrome c release to the cytoplasm. Moreover, severe hypoxia, was found to destabilize hypoxia inducible factor-1alpha (Hif-1alpha) mRNA. Reduction of oxidative stress attenuated this effect, implying a possible anti-apoptotic action of the master regulator of hypoxia response. Our data suggest that antioxidants can maintain cell function and survival by inhibiting the mitochondrial apoptotic pathway and stabilizing Hif-1alpha.  相似文献   

17.
Kang R  Livesey KM  Zeh HJ  Lotze MT  Tang D 《Autophagy》2011,7(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H 2O 2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

18.
《Autophagy》2013,9(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H2O2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号