首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting-edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements.  相似文献   

2.
Recently, the zebrafish (Danio rerio) has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits. Information about the techniques used to obtain a workable preparation is not readily available. Here, we describe a complete protocol for obtaining in vitro and in vivo zebrafish brain preparations. In addition, we performed extracellular recordings in the whole brain, brain slices, and immobilized nonanesthetized larval zebrafish to evaluate the viability of the tissue. Each type of preparation can be used to detect spontaneous activity, to determine patterns of activity in specific brain areas with unknown functions, or to assess the functional roles of different neuronal groups during brain development in zebrafish. The technique described offers a guide that will provide innovative and broad opportunities to beginner students and researchers who are interested in the functional analysis of neuronal activity, plasticity, and neural development in the zebrafish brain.  相似文献   

3.
Teh C  Chong SW  Korzh V 《BioTechniques》2003,35(5):950-954
The zebrafish is widely used for functional studies of vertebrate genes. It is accessible to manipulations during all stages of embryogenesis because the embryo develops externally and is optically transparent. However, functional studies conducted on the zebrafish have been generally limited to the earliest phase of activity of the gene of interest, which is a limitation in studies of genes that are expressed at various stages of embryonic development. It is therefore necessary to develop methods that allow for the modulation of gene activity during later stages of zebrafish development while leaving earlier functions intact. We have successfully electroporated the green fluorescent protein (GFP) reporter gene into the neural tube of the zebrafish embryo in a unidirectional or bilateral manner. This approach can be used for the functional analysis of the late role of developmental genes in the neural tube of zebrafish embryo and larvae.  相似文献   

4.
5.
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.  相似文献   

6.
7.
Xie Y  Yang D  He Q  Songyang Z 《PloS one》2011,6(2):e16440
Telomeres are specialized chromatin structures at the end of chromosomes. Telomere dysfunction can lead to chromosomal abnormalities, DNA damage responses, and even cancer. In mammalian cells, a six-protein complex (telosome/shelterin) is assembled on the telomeres through the interactions between various domain structures of the six telomere proteins (POT1, TPP1, TIN2, TRF1, TRF2 and RAP1), and functions in telomere maintenance and protection. Within the telosome, TPP1 interacts directly with POT1 and TIN2 and help to mediate telosome assembly. Mechanisms of telomere regulation have been extensively studied in a variety of model organisms. For example, the physiological roles of telomere-targeted proteins have been assessed in mice through homozygous inactivation. In these cases, early embryonic lethality has prevented further studies of these proteins in embryogenesis and development. As a model system, zebrafish offers unique advantages such as genetic similarities with human, rapid developmental cycles, and ease of manipulation of its embryos. In this report, we detailed the identification of zebrafish homologues of TPP1, POT1, and TIN2, and showed that the domain structures and interactions of these telosome components appeared intact in zebrafish. Importantly, knocking down TPP1 led to multiple abnormalities in zebrafish embryogenesis, including neural death, heart malformation, and caudal defect. And these embryos displayed extensive apoptosis. These results underline the importance of TPP1 in zebrafish embryogenesis, and highlight the feasibility and advantages of investigating the signaling pathways and physiological function of telomere proteins in zebrafish.  相似文献   

8.
Cell–cell recognition guides the assembly of the vertebrate brain during development. δ-Protocadherins comprise a family of neural adhesion molecules that are differentially expressed and have been implicated in a range of neurodevelopmental disorders. Here we show that the expression of δ-protocadherins partitions the zebrafish optic tectum into radial columns of neurons. Using in vivo two-photon imaging of bacterial artificial chromosome transgenic zebrafish, we show that pcdh19 is expressed in discrete columns of neurons, and that these columnar modules are derived from proliferative pcdh19+ neuroepithelial precursors. Elimination of pcdh19 results in both a disruption of columnar organization and defects in visually guided behaviors. These results reveal a fundamental mechanism for organizing the developing nervous system: subdivision of the early neuroepithelium into precursors with distinct molecular identities guides the autonomous development of parallel neuronal units, organizing neural circuit formation and behavior.  相似文献   

9.
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.  相似文献   

10.
11.
12.
13.
Xue Y  Kuok C  Xiao A  Zhu Z  Lin S  Zhang B 《遗传学报》2010,37(10):685-693
Mical(molecule interacting with CasL)represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes,including axon guidance,cell movement,cell-cell junction formation,vesicle trafficking and cancer cell metastasis.However,the expression and function of these genes during embryonic development have not been comprehensively characterized,especially in vertebrate species,although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates.So far,no mica/family homologs have been reported in zebrafish,an ideal vertebrate model for the study of developmental processes.Here we report eight homologs of m/ca/family genes in zebrafish and their expression profiles during embryonic development.Consistent with the findings in Drosophila and mammals,most zebrafish mical family genes display expression in neural and musculature systems.In addition,five mica/homologs are detected in heart,and one,micall2a,in blood vessels.Our data established an important basis for further functional studies of mica/family genes in zebrafish,and suggest a possible role for mica/genes in cardiovascular development.  相似文献   

14.
The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining feature of Hirschsprung’s disease (HSCR) and has been replicated in a number of mouse models. Mutations in the RET tyrosine kinase account for over half of familial cases of HSCR and mice mutant for Ret exhibit aganglionosis. RET exists in two main isoforms, RET9 and RET51 and studies in mouse have shown that RET9 is sufficient to allow normal development of the ENS. In the last several years, zebrafish has emerged as a model of vertebrate ENS development, having been supported by a number of demonstrations of conservation of gene function between zebrafish, mouse and human. In this study we further analyse the potential similarities and differences between ENS development in zebrafish, mouse and human. We demonstrate that zebrafish Ret is required in a dose-dependent manner to regulate colonization of the gut by neural crest derivatives, as in human. Additionally, we show that as in mouse and human, zebrafish ret is produced as two isoforms, ret9 and ret51. Moreover, we show that, as in mouse, the Ret9 isoform is sufficient to support colonization of the gut by enteric neurons. Finally, we identify zebrafish orthologues of genes previously identified to be expressed in the mouse ENS and demonstrate that these genes are expressed in the developing zebrafish ENS, thereby identifying useful ENS markers in this model organism. These studies reveal that the similarities between gene expression and gene function across vertebrate species is more extensive than previously appreciated, thus supporting the use of zebrafish as a general model for vertebrate ENS development and the use of zebrafish genetic screens as a way to identify candidate genes mutated in HSCR cases.  相似文献   

15.
Zebrafish is a powerful model system for investigations of vertebrate neural development. The animal has also become an important model for studies of neuronal function. Both in developmental and functional studies, transgenic zebrafish expressing fluorescent proteins in central nervous system neurons have been playing important roles. We review here the methods for producing transgenic zebrafish. Recent advances in transposon- or bacterial artificial chromosome-based transgenesis greatly facilitate the creation of useful lines. We also present our study on alx -positive neurons to reveal how transgenic zebrafish expressing fluorescent proteins in a specific class of neurons can be used to investigate their development and function.  相似文献   

16.
Cardiac neural crest contributes to cardiomyogenesis in zebrafish   总被引:2,自引:0,他引:2  
In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.  相似文献   

17.
18.
19.
The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号