首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015–2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.  相似文献   

2.
Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ13C of CO2 efflux (δ13CE) from non‐leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ13CE of above‐ground plant components, whereas δ13CE of coarse roots was rather stable. During summer, δ13CE of trunks was about ?28.2‰ (Beech) and ?26.8‰ (Spruce). During winter dormancy, δ13CE increased by 5.6–9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ13CE pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ13CE of trunks during the winter results from interrupted access to recent photosynthates.  相似文献   

3.
Physiological girdling of pine trees via phloem chilling: proof of concept   总被引:2,自引:0,他引:2  
Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root-mycorrhizal-soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 degrees C. Both methods rapidly reduced soil CO2 efflux, and after approximately 10 days decreased net photosynthesis (P(n)), the latter indicating feedback inhibition. Chilling decreased soil-soluble C, indicating that decreased soil CO2 efflux may have been mediated by a decrease in root C exudation that was rapidly respired by microbes. These effects were only observed in late summer/early autumn when above-ground growth was minimal, and not in the spring when above-ground growth was rapid. All of the effects were rapidly reversed when chilling was ceased. In fertilized plots, both chilling and physical girdling methods reduced soil CO2 efflux by approximately 8%. Physical girdling reduced soil CO2 efflux by 26% in non-fertilized plots. This work demonstrates that phloem chilling provides a non-destructive alternative to reducing the movement of recent photosynthate below the point of chilling to estimate C allocation below ground on large trees.  相似文献   

4.
Summary The present study aimed at a physiological understanding of the seasonal changes of the carbohydrate patterns and levels in the various tissues of 8-year-old Scots pine (Pinus sylvestris L.) trees growing under ambient climatic conditions in the botanical garden at Bayreuth. The photosynthates of selected twig sections were labelled by 14CO2 fixation and after chase periods of 1 h up to 8 months, the distribution of radiocarbon in the whole trees was determined and the labelling of identified carbohydrates was compared with the levels of these compounds in the individual tissues. Bud break and sprouting in spring is exclusively supplied by the recent photosynthates of the previous year's needles. During summer assimilates of the old needles were utilized for secondary growth of the axial system while growth of the recent-year's shoots was supported by their own photosynthesis. In autumn, soluble carbohydrates were produced instead of starch, a major part of which in addition to recent photosynthates was utilized for root growth during the cold season. Another part of the autumnal storage material was incorporated into the cell walls of the latest xylem and phloem elements still in winter. A pronounced starch-oligosaccharide interconversion upon frost hardening, and its reversal in spring as has been described for deciduous trees, could not be observed. This was due to maintenance of photosynthetic capability even in the cold season and the replacement of consumed storage material especially in late winter and early spring by new photosynthates.  相似文献   

5.
This study examines the effect of pH changes on photosynthetic characteristics and the role of dissolved inorganic carbon (DIC) in determining the dominance of three species of macroalgae Chaetomorpha linum (O.F. Müller) Kützing, Gracilaria verrucosa (Hudson) Papenfuss and Ulva sp. in a Mediterranean coastal lagoon. Fluctuations of pH were measured in the lagoon in summer. Water column CO(2) and HCO(3)(-) concentrations inside the algal mat showed significant diurnal fluctuations, from a morning peak to an afternoon low, decreasing 96 and 40%, respectively. The response of photosynthesis to increased pH was examined in laboratory conditions in spring (May) and summer (July). The photosynthetic rate declined rapidly at pH above 8.5 and below 6.5. G. verrucosa responded differently in spring and summer showing acclimation to higher pH in summer than in spring. In Ulva sp. incubations, we observed optimum photosynthesis between pH 6 and 7.5. The decrease in photosynthetic rate below pH 6 was lower (12.30%) than above pH 8 (81.03%). This difference may be related to the origin of the macroalgae, suggesting acclimation to the original pH of the environment. Results from instantaneous photosynthesis measurements indicate that low DIC-availability limits the photosynthetic capacity of G. verrucosa, C. linum and Ulva sp. in spring and of C. linum at high irradiances in summer. Our results also show that G. verrucosa has a higher efficiency at low CO(2) concentrations than C. linum and Ulva sp. It is suggested that G. verrucosa may be better adapted to maintain higher photosynthetic rates than other macroalgae in conditions of tissue N sufficiency and low water DIC concentrations which are typical of shallow coastal environments in summer.  相似文献   

6.
Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even‐aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven‐aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (~?480 to ?500 g C m?2 yr?1). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (?4 g C m?2 yr?1), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low‐to‐moderate annual net CO2 uptake (?34 to ?193 g C m?2), but with annual harvest taken into account it will be a source of CO2 (+97 to +386 g C m?2). The annually changing patchwork of crops will have strong consequences on the regions' seasonal and annual carbon exchange. Thus, not only land use, but also land‐use history and site‐specific management decisions affect the large‐scale carbon balance.  相似文献   

7.
Mixed spruce-beech plantations grown in large open-top chambers (OTC) were used to study consequences of elevated CO2, nitrogen-deposition and soil type on plant internal nitrogen and sulphur cycling of juvenile beech (Fagus sylvatica L.) and spruce (Picea abies Karst.) in a competitive situation. Processes of re-cycling as a consequence of protein turnover during leaf senescence in autumn were of further interest. For this purpose, phloem sap was collected in September 1998 and analysed for the composition and concentrations of organic and inorganic nitrogen and sulphur compounds. The phloem exudate of spruce showed higher total soluble non-protein nitrogen (TSNN) concentration on calcareous soil than on acidic soil, independent of the treatment. N-fertilization increased the N-concentration of phloem exudate significantly on both soil types, mainly by an increase of Arg and Gln concentrations. Elevated CO2 slightly increased TSNN on calcareous, but not on acidic soil. The combination of elevated CO2 and augmented N-deposition induced a further increase of TSNN on calcareous soil, but caused a lower N-effect on TSNN on acidic soil. Arg, the main TSNN component in phloem exudate, mediated this effect. Since Arg is considered to be a major nitrogen storage compound, it is concluded that in autumn elevated CO2 and augmented N-deposition, influence storage of N rather than N-supply of spruce. An effect of elevated CO2 and augmented N-deposition on GSH and sulphate concentrations in phloem exudate of spruce was not observed on acidic soil. On calcareous soil augmented N-deposition enhanced, elevated CO2 decreased phloem exudate GSH contents. In combination, elevated CO2 compensated the positive effect of N-deposition. The effects of elevated CO2 and augmented N-deposition on phloem sap N- and S-contents described above were not observed for beech trees. Apparently, elevated CO2 and augmented N-deposition did not affect plants internal S and N cycling of beech grown in spruce-beech plantations.  相似文献   

8.
The lichen Hypogymnia physodes was sampled from spruce trunks and we used to assess natural elements in the throughfall from pairs of neighbouring beech (Fagus sylvatica) and spruce (Picea abies) canopies in an unmanaged forest reserve. The beech bark (pH = 4.36 ± 0.13) was less acidic than spruce bark (3.71 ± 0.06). After a 1 yr transplantation onto trunks, lichens on beech had significantly higher concentrations of Ca, K, Mg and P than on spruce, and lower Mn, Zn and C, but had similar Al, B, Fe, N, Na, S and Si concentrations. Base cations (Ca, Mg, K) in lichens highly significantly increased with bark pH, with no overlap between tree species neither for base cations, nor for pH. The results are consistent with the view that trees modify the elemental composition of lichens in their dripzone, and that trees at least to some extent can modify the elemental chemistry of their local surroundings and thus influence ecosystem processes. We discuss lichen transplantation as a method to estimate long-term effects of tree species on local chemical environments.  相似文献   

9.
The (13)C isotopic signature (C stable isotope ratio; delta(13)C) of CO(2) respired from forest ecosystems and their particular compartments are known to be influenced by temporal changes in environmental conditions affecting C isotope fractionation during photosynthesis. Whereas most studies have assessed temporal variation in delta(13)C of ecosystem-respired CO(2) on a day-to-day scale, not much information is available on its diel dynamics. We investigated environmental and physiological controls over potential temporal changes in delta(13)C of respired CO(2) by following the short-term dynamics of the (13)C signature from newly assimilated organic matter pools in the needles, via phloem-transported organic matter in twigs and trunks, to trunk-, soil- and ecosystem-respired CO(2). We found a strong 24-h periodicity in delta(13)C of organic matter in leaf and twig phloem sap, which was strongly dampened as carbohydrates were transported down the trunk. Periodicity reappeared in the delta(13)C of trunk-respired CO(2), which seemed to originate from apparent respiratory fractionation rather than from changes in delta(13)C of the organic substrate. The diel patterns of delta(13)C in soil-respired CO(2) are partly explained by soil temperature and moisture and are probably due to changes in the relative contribution of heterotrophic and autotrophic CO(2) fluxes to total soil efflux in response to environmental conditions. Our study shows that direct relations between delta(13)C of recent assimilates and respired CO(2) may not be present on a diel time scale, and other factors lead to short-term variations in delta(13)C of ecosystem-emitted CO(2). On the one hand, these variations complicate ecosystem CO(2) flux partitioning, but on the other hand they provide new insights into metabolic processes underlying respiratory CO(2) emission.  相似文献   

10.
? An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. ? Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. ? Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. ? Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale.  相似文献   

11.
The grape rust mite, Calepitrimerus vitis (Nalepa), is an important grapevine pest worldwide. During the period of early spring emergence and movement to the overwintering refuge in the late season, growers need to control C. vitis properly. We developed forecasting models of early spring emergence and late summer overwintering movement of C. vitis in vineyards for control time. Their activation in the early spring was estimated by changes in density between upper bud and the whole bud. The density of C. vitis on buds was estimated using a washing out method. The proportion of C. vitis on the upper bud was increased as accumulated degree-day (DD) was increased. This relationship was well described by a linear regression model. Based on the model, 153 DD with a base temperature of 10.51?°C, at which emergence rate of C. vitis deutogynes was 70%, was proposed as the control time for C. vitis. Movement of deutogynes in the late summer was observed. The ratio of C. vitis movement for hibernation was increased as the relative night length was getting longer. This relationship was well described by a two-parameter Weibull function. Proportion of migrant deutogynes was low in August. It increased sharply when relative night length was 0.499 (11.97?h, middle September). Therefore, control should be conducted before autumnal equinox in late summer at the latest.  相似文献   

12.
Ten pairs of secondary pure spruce (Picea abies) and adjacent mixed spruce-beech (Fagus sylvatica) stands on comparable sites were selected on two different bedrocks for soil formation (Flysch: nutrient rich and high soil pH; Molasse: poor nutrient supply and acidic) to study how an admixture of beech to spruce stands affects nutrient cycling and consequently soil chemistry. Soil analyses indicated accumulation of Ca under the mixed stands while the top soil under pure spruce was acidified. It was hypothesized that changes of soil chemical properties due to species composition over the last six decades are reflected in the stem wood of spruce. Three healthy dominant spruce trees per plot were selected for coring. Cores were crossdated and half-decadal samples were analyzed for Ca, Mg, Mn and Al. Calcium and Mg concentrations in stem wood of spruce were significantly higher for the pure spruce than for the mixed stands in spite of lower Ca and Mg stores in the soil. We assume that acidification caused by pure spruce mobilized these cations temporarily, increasing soil solution contents and consequently stem wood concentrations. It was possible to reconstruct soil pH from the element ratios Ca/Al (pure stands) and Ca/Mg (mixed stands), since these ratios in the stem wood of the last half-decade did correlate with soil pH for selected soil depths. Reconstructed soil pH showed a decline over the last 60 years under both species compositions due to accumulation of base cations in the increasing biomass. Comparisons of reconstructed soil pH in 0–5 and 10–20 cm soil depth indicated more pronounced top soil acidification (lower soil pH in 0–5 cm) by spruce on the nutrient rich soil (Flysch) than on the acidic soil (Molasse). However, admixture of beech caused higher pH values in 0–5 cm than in 10–20 cm soil depth on Flysch due to the observed Ca-pump effect of beech (uptake of Ca from deeper soil horizons).  相似文献   

13.
In the spring of 2010, temperatures averaged ~3 °C above the long‐term mean (March–May) across the northeastern United States. However, in mid‐to‐late spring, much of this region experienced a severe frost event. The spring of 2010 therefore provides a case study on how future spring temperature extremes may affect northeastern forest ecosystems. We assessed the response of three northern hardwood tree species (sugar maple, American beech, yellow birch) to these anomalous temperature patterns using several different data sources and addressed four main questions: (1) Along an elevational gradient, how was each species affected by the late spring frost? (2) How did differences in phenological growth strategy influence their response? (3) How did the late spring frost affect ecosystem productivity within the study domain? (4) What are the potential long‐term impacts of spring frost events on forest community ecology? Our results show that all species exhibited early leaf development triggered by the warm spring. However, yellow birch and American beech have more conservative growth strategies and were largely unaffected by the late spring frost. In contrast, sugar maples responded strongly to warmer temperatures and experienced widespread frost damage that resulted in leaf loss and delayed canopy development. Late spring frost events may therefore provide a competitive advantage for yellow birch and American beech at the expense of sugar maple. Results from satellite remote sensing confirm that frost damage was widespread throughout the region at higher elevations (>500 m). The frost event is estimated to have reduced gross ecosystem productivity by 70–153 g C m?2, or 7–14% of the annual gross productivity (1061 ± 82 g C m?2) across 8753 km2 of high‐elevation forest. We conclude that frost events following leaf out, which are expected to become more common with climate change, may influence both forest composition and ecosystem productivity.  相似文献   

14.
In Central Europe, Fagus sylvatica and Picea abies represent contrasting extremes in foliage type, crown structure and length of growing season. In order to examine the competitive strategies of these two co-occurring species, we tested the following hypotheses: (1) the space occupied by the foliage of sun branches is characterized by greater foliar mass investment compared to shade branches, (2) the carbon (C) gain per unit of occupied space is greater in sun than in shade branches, and (3) annual C and water costs of the foliage for sustaining the occupied space are low, wherever C gain per unit of occupied space is low. These were investigated in a mature forest in Southern Germany. The examination was based on the annual assessment of space-related resource investments and gains of the foliage. The foliated space around branches was regarded as the relevant volume with respect to aboveground resource availability. Occupied crown space per standing foliage mass was higher in shade compared to sun branches of beech, whereas no difference existed in crown volume per foliage mass between sun and shade branches of spruce (hypothesis 1 accepted for beech but rejected for spruce). However, beech occupied more space per foliage mass than spruce. The C gain per occupied crown volume was greater in sun than in shade branches (hypothesis 2 accepted) but did not differ between species. The amount of occupied space per respiratory and transpiratory costs did not differ between species or between sun and shade branches. In beech and spruce, the proportion of foliage investment in the annual C balance of sun and shade branches remained rather stable, whereas respiratory costs distinctly increased in shade foliage. Hence, shade branches were costly structures to occupy space, achieving only low and even negative C balances (rejection of hypothesis 3), which conflicts with the claimed C autonomy of branches. Our findings suggest that competitiveness is determined by the standing foliage mass and the annual branch volume increment rather than annual investments in foliage. Expressing competitiveness in terms of space-related resource investments versus returns, as demonstrated here, has the potential of promoting mechanistic understanding of plant–plant interactions.  相似文献   

15.
Fine roots play a key role in the forest carbon balance, but their carbon dynamics remain largely unknown. We pulse labelled 50 m(2) patches of young boreal forest by exposure to (13)CO(2) in early and late summer. Labelled photosynthates were traced into carbon compounds of < 1 and 1-3 mm diameter roots (fine roots), and into bulk tissue of these and first-order roots (root tips). Root tips were the most strongly labelled size class. Carbon allocation to all size classes was higher in late than in early summer; mean residence times (MRTs) in starch increased from 4 to 11 months. In structural compounds, MRTs were 0.8 yr in tips and 1.8 yr in fine roots. The MRT of carbon in sugars was in the range of days. Functional differences within the fine root population were indicated by carbon allocation patterns and residence times. Pronounced allocation of recent carbon and higher turnover rates in tips are associated with their role in nutrient and water acquisition. In fine roots, longer MRTs but high allocation to sugars and starch reflect their role in structural support and storage. Accounting for heterogeneity in carbon residence times will improve and most probably reduce the estimates of fine root production.  相似文献   

16.
The population dynamics of Rhipicephalus microplus (Ixodida: Ixodidae) in northwest Argentina was analysed to support the design of strategic methods for its control. Both parasitic and non‐parasitic phases were studied. The seasonal activity of R. microplus in its parasitic phase was characterized by three peaks in abundance: the first in mid–late spring; the second in summer, and the third in autumn. The non‐parasitic phase of R. microplus was characterized by a long total non‐parasitic period observed after exposures of females from mid‐summer to early autumn, a short total non‐parasitic period observed after exposures of females from late winter to late spring, a short period of larval longevity in early and mid‐summer, and no hatch of the eggs produced by females exposed in mid‐ and late autumn and winter. Treatments of cattle administered during the period from late winter to late spring will act on small cohorts of R. microplus, preventing the emergence of larger generations in summer and autumn. A 17‐week spelling period starting in late spring and early summer will be necessary to achieve optimal control of R. microplus free‐living larvae. If spelling begins in mid‐ or late summer or in autumn, the required period will be 26–27 weeks.  相似文献   

17.
Relationships among elevation, foliar morphology, spectral reflectance, and chlorophyll fluorescence of two co-occurring montane conifers, red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.), were investigated along two transects from 460 to 1460 m on Mt. Moosilauke in the White Mountains of New Hampshire, USA. Spectral reflectance (300-1100 nm wavelengths) and the chlorophyll fluorescence F(v)/F(m) ratio were measured on dark-adapted needles. Foliar morphology (needle size, shape, and mass) and nitrogen concentrations were measured in the laboratory. Reflectance spectra varied between species and with elevation. Two chlorophyll measures, red edge position and a chlorophyll-based difference index (Chl NDI = R750 - R705/R750 + R705), indicated more chlorophyll in fir than in spruce and decreasing chlorophyll with increasing elevation in both species. The structure-independent pigment index (SIPI = R800 - R445/R800 - R680) increased with elevation, indicating an increasing carotenoid?:?chlorophyll ratio. The photochemical reflectance index (PRI = R531 - R570/R531 + R570), a measure of photosynthetic radiation use efficiency, decreased with increasing elevation up to 1370 m. In the highest elevation site, within the stunted alpine krummholz at 1460 m, PRI was higher than at 1370 m, but still lower than at 1070 m. This same pattern was evident in the chlorophyll fluorescence F(v)/F(m) measurements. These independent indices indicate higher stress in spruce than fir, which may be related to the "spruce decline" reported in the northeastern USA. Results also indicate progressively increasing stress with increasing elevation up to 1370 m. Stress appears to be lower at 1460 m than at 1370 m, despite the harsher conditions at the very summit of Mt. Moosilauke. This may be a consequence of stress-tolerant physiology and/or prostrate architecture.  相似文献   

18.
The effect of European beech (Fagus sylvatica) and Norway spruce (Picea abies) on acid deposition and soil water chemistry was studied at a site in the Ore Mts., Czech Republic, that has been subjected to decades of elevated acidic deposition. Dry deposition onto the spruce canopy significantly increased acid input to the soil in comparison to the beech canopy. As a result soil waters were more acidic; Al, SO4(2-), and NO3- concentrations were significantly higher; and Ca and K concentrations were lower in the spruce stand than in the beech stand. The concentrations of potentially toxic inorganic aluminium (Al(in)) were, on average, three times higher in the spruce stand than in the beech stand. Thus, Al played a major role in neutralizing acid inputs to mineral soils in the spruce stand. Despite the higher dissolved organic carbon (DOC) concentrations in spruce organic soil solutions, organic Al (Al(org)) accounted for only 30% of total Al (Al(tot)), whereas in beech organic soil solutions Al(org) was 60% of Al(tot). Soil waters in the beech stand exhibited Al(in) concentrations close to solubility with jurbanite (Al(SO4)OH.5H2O). The more acidic soil waters in the spruce stand were oversaturated with respect to jurbanite. The Bc/Al(in) ratio (Bc = Ca + Mg + K) in O horizon leachate was 4.6 and 70 in spruce and beech stands, respectively. In beech mineral soil solutions, the Bc/Al(in) ratio declined significantly to about 2. In the spruce stand, mineral soil solutions had Bc/Al(in) values below the critical value of 1. The observed Bc/Al(in) value of 0.4 at 30 cm depth in the spruce stand suggests significant stress for spruce rooting systems. A more favourable value of 31 was observed for the same depth in the beech stand. The efficiency of the spruce canopy in capturing acidic aerosols, particulates, and cloud water has resulted in the long-term degradation of underlying soils as a medium for sustainable forest growth.  相似文献   

19.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(6):1044-1050
寄生虫的感染会对黄鳝(Monopterus albus Zuiew,1793)造成不利影响,其中寄生其肠道的隐藏新棘虫(Pallisentis(Neosentis)celatus van Cleave,1928)和寄生于体腔的胃瘤线虫幼虫(Eustrongylidessp.)对黄鳝健康的影响尤其严重,研究调查了以上两种寄生蠕虫在黄鳝体内的频率分布以及季节动态。在连续23个月内共调查黄鳝1980尾,结果显示,隐藏新棘虫的感染率为34.46%,平均丰度为2.948.37,平均丰度与鱼类体长之间呈显著正相关关系(R=0.16,P0.05),平均丰度和聚集度在42 cmL48 cm体长组达到最大值后开始下降,呈现凸形曲线。胃瘤线虫幼虫感染率为15.14%,平均丰度为0.612.45,平均丰度与鱼类体长之间呈显著负相关关系(R=-0.14,P0.05),平均丰度在24 cmL30 cm体长组达到最大值后开始逐渐下降,聚集度是在30 cmL36 cm体长组达到最大值后开始下降。各月份间隐藏新棘虫的平均丰度和感染率都有显著性差异(F=10.50,P0.05;G=84.440.05222= 33.9),感染主要发生在春季和秋季;胃瘤线虫幼虫各月份间的平均丰度和感染率也都有显著性差异(F=6.70,P0.05;G =143.88 0.05222= 33.9),感染主要发生在春末夏初。    相似文献   

20.
The origin of the carbon atoms in the CO(2) respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using (13)C/(12)C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO(2) respired in the dark after a light period revealed that the CO(2) was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO(2) lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号