首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   

2.
3.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

4.
目的:探索促红细胞生成素(EPO)对高脂饲料(HFD)喂养小鼠血糖和血浆胰岛素水平、胰岛素抵抗指数(HOMA-IR)、糖耐量,以及棕色脂肪组织中含PR结构域蛋白16(PRDM16)、信号转导与转录激活因子3(STAT3)磷酸化水平(p-STAT3/STAT3)、成纤维细胞生长因子21(FGF21)mRNA以及蛋白质表达的影响,为肥胖及其并发症的发生机制提供线索。方法:20只高脂饲料喂养的C57BL/6J雄性小鼠随机分为对照组(HFD-Con)和EPO组(HFD-EPO),两组分别腹腔注射生理盐水和EPO(200 IU/kg),每周3次,连续4周。4周后检测两组动物的体重、血糖与血浆胰岛素水平、HOMA-IR及糖耐量的变化;分别使用实时定量PCR法和Western blot法检测棕色脂肪组织中PRDM16、STAT3、FGF21 mRNA和蛋白质水平。结果:腹腔注射EPO 4周后,HFD-EPO组小鼠体重为(26.65±0.85)g,HFD-Con组体重为(31.50±1.60)g,P<0.01。HFD-Con组血糖为(91.06±9.86)mg/dl,HFD-EPO组为(62.79±8.09)mg/dl,P<0.01;HFD-EPO组小鼠血浆胰岛素水平为(10.56±1.06)μU/ml,HFD-Con组为(13.2±1.1)μU/ml,P<0.01。与HFD-Con组比较,HFD-EPO组的糖耐量水平显著改善,胰岛素抵抗指数下降;HFD-EPO组动物棕色脂肪组织中PRDM16、FGF21mRNA以及蛋白质表达,p-STAT/STAT3水平均显著增加,两组小鼠肝脏中FGF21 mRNA含量、血浆中FGF21含量无明显差异。结论:EPO可能通过增加棕色脂肪组织中PRDM16表达促进棕色脂肪组织的分化,降低高脂喂养小鼠的血糖水平、改善高脂喂养小鼠的糖代谢状态。  相似文献   

5.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

6.
BackgroundThe regulative effects of caudatin, a C-21 steroid that is identified from Cynanchum bungee roots, on adipogenesis and obesity have not been studied. Many studies have demonstrated that the activation of hedgehog (Hh) signaling can help prevent obesity. Therefore, we hypothesized that caudatin can inhibit adipogenesis and obesity via activating the Hh signaling pathway.MethodsTo investigate the effects of caudatin on adipogenesis in 3T3-L1 preadipocytes and high-fat diet induced obesity in C57BL/6 mice, in vitro and in vivo experiments were performed. For in vitro evaluation, Oil red O staining were used to represent lipid accumulation in differentiated 3T3-L1 adipocytes. For in vivo assessment, male 5 week-old C57BL/6 mice were fed with standard chow diet, high-fat diet (HFD), HFD with 25 mg/kg caudatin, HFD with 1mg/kg purmorpharmine for 10 weeks, respectively. Hh signaling and key adipogenic marker involved in adipogenesis were evaluated by real-time PCR and western blot. The adipocyte size of white adopose tissue and lipid storage of liver were visualized by hematoxylin and eosin staining. In addition, the expression of Gli1 and peroxisome proliferator-activated receptor γ (PPARγ) in white adipose tissue were investigated by immunohistochemistry staining.ResultsCaudatin suppressed the accumulation of lipid droplets and downregulated the expression of key adipogenic factors, i.e., peroxisome proliferator-activated receptor γ PPARγ and CCAAT-enhancer binding protein α (C/EBPα), through activating Hh signaling in differentiated 3T3-L1 cells. Furthermore, caudatin and the Hh activator purmorpharmine significantly decreased body weight gain and white adipose tissue (WAT) weight in HFD-induced mice and affected adipogenic markers and Hh signaling mediators in WAT, which were in line with the in vitro experimental results.ConclusionTo our best knowledge, it is the first report to demonstrate that caudatin downregulated adipocyte differentiation and suppressed HFD-induced body weight gain through activating the Hh signaling pathway, suggesting that caudatin can potentially counteract obesity.  相似文献   

7.
8.
White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the molecular mechanisms that regulate preadipocyte proliferation during adipose tissue development. Necdin, which is expressed predominantly in postmitotic neurons, is a pleiotropic protein that possesses anti-mitotic and pro-survival activities. Here we show that necdin functions as an intrinsic regulator of white preadipocyte proliferation in developing adipose tissues. Necdin is expressed in early preadipocytes or mesenchymal stem cells residing in the stromal compartment of white adipose tissues in juvenile mice. Lentivirus-mediated knockdown of endogenous necdin expression in vivo in adipose tissues markedly increases fat mass in juvenile mice fed a high-fat diet until adulthood. Furthermore, necdin-null mutant mice exhibit a greater expansion of adipose tissues due to adipocyte hyperplasia than wild-type mice when fed the high-fat diet during the juvenile and adult periods. Adipose stromal-vascular cells prepared from necdin-null mice differentiate in vitro into a significantly larger number of adipocytes in response to adipogenic inducers than those from wild-type mice. These results suggest that necdin prevents excessive preadipocyte proliferation induced by adipogenic stimulation to control white adipocyte number during adipose tissue development.  相似文献   

9.
BackgroundWu-Mei-Wan, a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Our previous study showed that WMW treatment can prevent T2DM in db/db mice, which motivating the application of WMW on metabolic disorders.PurposeObesity and its comorbid diseases have increased dramatically and are now a worldwide health problem. There is still a lack of satisfactory treatment strategies for obesity. This work was designed to assess the effect and related mechanism of WMW on high fat diet (HFD)-induced obese mice model.MethodsObese mice were induced by HFD. Thetherapeutic effect of WMW were analyzed by examining body and adipose tissue weight, metabolic profile and energy expenditure. Adipose tissue phenotype was determined by histological staining and the mitochondrial content was examined by transmission electron microscopy (TEM). Immunohistochemical and immunofluorescence staining, RT-qPCR and Western blot analysis were used to evaluate expression of key molecules in adipose tissue.ResultsWMW treatment significantly protects HFD-induced obesity. Here we showed that WMW limits weight gain, improves metabolic profile and increases energy expenditure. WMW inhibits the hypertrophy and hyperplasia of white adipocytes, the mechanism involving the inhibition of TLR3/IL-6/JAK1/STAT3 pathway. In brown adipose tissue (BAT), WMW promotes thermogenicprogramme without affecting cell proliferation. The activated BMP7/ Smad1/5/9 pathway is considered to be one of the explanations for the effect of WMW on BAT.ConclusionOur results suggested that WMW can prevent obesity and its underlying mechanisms are associated with reducing white adipose tissue and enhancing brown adipose tissue function.  相似文献   

10.
目的:研究黄芪水提取物(Astragalus radix extract,ARE)对高脂饮食(High fat diet,HFD)引起的小鼠肥胖的作用及可能机制。方法:将30只C57 BL/6小鼠随机分为正常喂养组(ND组,n=10)、高脂喂养组(HFD组,n=10)和高脂喂养+黄芪水提取物处理组(ARE组,n=10)。记录三组小鼠体重及食物摄入。在喂养16周时,对小鼠附睾白色脂肪称重,并进行HE染色观察脂肪细胞大小;对小鼠肝脏进行进行HE染色观察肝脏脂肪变性情况。应用ELISA方法检测血清瘦素及脂联素水平。应用Western Blot检测脂肪组织过氧化物酶体增殖物激活受体γ(Peroxisome proliferator activated receptorγ,PPARγ)表达。结果:1与ND组相比,HFD组体重及热量摄入均显著增加,表明肥胖模型建立成功;ARE处理组的体重较HFD组显著下降,但其热量摄入与HFD组相当。2与ND组相比,HFD组白色脂肪组织重量增加、脂肪细胞增大、肝细胞出现显著脂肪变性;ARE处理组上述指标较HFD组明显改善。3与ND组相比,HFD组瘦素水平升高、脂联素水平下降;ARE处理组与HFD组相比,瘦素水平降低、脂联素水平升高。4与ND组相比,HFD组PPARγ表达显著增加,而ARE处理组较HFD组PPARγ表达下降。结论:黄芪水提取物可能通过抑制PPARγ减轻高质饮食引起的肥胖。  相似文献   

11.
Decreased monoamine oxidase (MAO) activity has been observed in adipose tissue of obese patients. Since substrates of MAO and semicarbazide-sensitive amine oxidase (SSAO) can modify adipocyte metabolism, this work investigates whether changes in amine oxidase activity may occur during white adipose tissue (WAT) development. We evaluated MAO and SSAO activities in WAT of high-fat diet (HFD) and low-fat diet fed mice. To distinguish the effect of HFD on its own from the effect of fat mass enlargement, obesity-prone transgenic line of the FVBn strain lacking beta3-adrenergic receptors (AR) but expressing human beta3-AR and alpha2-AR (mbeta3-/-, hbeta3+/+, halpha2+/-) was compared to its obesity-resistant control (mbeta3-/-, hbeta3+/+). As already reported, the former mice became obese while the latter resisted to HFD. No significant change in SSAO or MAO activity was found in WAT of both strains after HFD when expressing oxidase activity per milligram of protein. However, when considering the overall capacity of the fat depots to oxidize tyramine or benzylamine, there was an increase in MAO and SSAO activity only in the enlarged WAT of HFD-induced obese mice. Therefore, the comparison of these models allowed to demonstrate that the higher amine oxidase capacity hold in enlarged fat stores of obese mice is more likely the consequence of increased fat cell number rather than the result of an increased expression of MAO or SSAO in the adipocyte.  相似文献   

12.
Xu X  Liu C  Xu Z  Tzan K  Wang A  Rajagopalan S  Sun Q 《Life sciences》2012,90(25-26):1001-1009
AimsHigh-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic abnormalities. The expanded adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. In this study, we investigated the effects of long-term HFD on adipocyte progenitor cell (APC) population and adipose-specific gene profiles in both white and brown adipose, and the role of perivascular adipose in the alteration of vascular function in response to HFD.Main methodsMale C57BL/6 mice were fed a standard normal diet (ND) or HFD for about 8 months. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test. APC population and adipose-related gene profile were evaluated, and vascular function was measured in the presence or absence of perivascular adipose. Adiponectin and AMPK activity were also investigated.Key findingsHFD induced insulin resistance and glucose intolerance, and resulted in a decrease in APC population in brown, but not in white adipose tissue, when compared with animals fed a ND, with differential alterations of white and brown adipocyte-specific gene expression in brown and white adipose. Additionally, HFD led to altered vascular function in arteries in the presence of perivascular adipose tissue, which is associated with increased superoxide production. Adiponectin and AMPK activity were significantly decreased in response to long-term HFD.SignificanceThese findings suggest that long-term high-fat intake differentially alters adipocyte progenitor population and adipose-related gene expression in adipose tissue, and adiponectin-AMPK signaling might be involved. In addition, HFD induces changes in perivascular adipose-mediated vascular function.  相似文献   

13.
14.
Maternal obesity (MO) predisposes offspring to metabolic disorders, but the mechanisms remain poorly defined. Recent studies emphasize the importance of brown adipose tissue (BAT) in maintaining metabolic health, and MO was recently demonstrated to impair BAT thermogenic function in offspring. The current study aimed to investigate the mechanisms leading to the impairment in fetal BAT development due to MO. Female C57BL/6J mice were fed a control diet or a 60% high-fat diet for 10 weeks, mated and maintained on their respective diets during pregnancy. Fetal tissue was collected at E18.5, the late stage of pregnancy. Fetal BAT contained more triglycerides compared to the control, which was correlated with higher expression of white adipogenic markers. On the other hand, the expression of BAT markers was down-regulated in the MO fetal BAT. Based on RNA-sequencing analyses, genes related to mitochondriogenesis and myogenesis were found to be down-regulated, while those related to white adipocyte differentiation were up-regulated in MO fetal BAT. Because brown adipocytes are derived from myogenic progenitors, the down-regulation of myogenic genes might partially explain hampered brown adipogenesis in MO fetal BAT. Consistently, mitochondrial DNA and mitochondrial biogenesis markers were also down-regulated in MO fetal BAT. MicroRNA-sequencing identified that miR-204-5p expression was elevated in MO fetal BAT. This microRNA targeted the 3′-untranslated regions of PGC1α and Sirt1 mRNA to suppress their expression and impair mitochondriogenesis. In summary, MO impaired fetal BAT development through suppressing myogenesis and brown adipogenesis while enhancing white adipogenic commitment, and inhibited mitochondriogenesis partially through enhancing miR-204-5p expression.  相似文献   

15.
Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.  相似文献   

16.
A high-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic syndrome, including obesity and insulin resistance. The increased visceral adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. To investigate the effects of exercise on HFD-induced metabolic disorders, male C57BL/6 mice were divided into four groups: SED (sedentary)-ND (normal diet), EX (exercise)-ND, SED-HFD, and EX-HFD. Exercise was performed on a motorized treadmill at 15 m/min, 40 min/day, and 5 day/wk for 8 wk. Exercise resulted in a decrease in abdominal fat contents and inflammation, improvements in glucose tolerance and insulin resistance, and enhancement of vascular constriction and relaxation responses. Exercise with or without HFD increased putative brown adipocyte progenitor cells in brown adipose tissue compared with groups with the same diet, with an increase in brown adipocyte-specific gene expression in brown and white adipose tissue. Exercise training enhanced in vitro differentiation of the preadipocytes from brown adipose depots into brown adipocytes and enhanced the expression of uncoupling protein 1. These findings suggest that exercise ameliorates high-fat diet-induced metabolic disorders and vascular dysfunction, and increases adipose progenitor cell population in brown adipose tissue, which might thereby contribute to enhanced functional brown adipose.  相似文献   

17.

Background

Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional studies in this transgenic mouse model.

Methodology and Principal Findings

When compared to control animals, whole body energy expenditure was increased in the transgenic mice. Subsequently, we performed DNA microarray analysis and real-time PCR on white adipose tissue. Consistent with the metabolic chamber data, we observed increased expression of genes associated with fatty acid β-oxidation and heat production, and a decrease in the genes associated with lipid synthesis. Gene expression of Pgc1a, a regulator of fatty acid oxidation and Ucp1, a brown adipocyte specific protein, was increased in the white adipose tissue of the transgenic mice. This observation was subsequently verified by both Western blotting and histological examination. Expression of RIP140, a regulator of white adipocyte differentiation, and the lipid droplet protein FSP27 was decreased in the transgenic mice. Importantly, FSP27 has been shown to control gene expression of these crucial metabolic regulators. Overexpression of PeriA in 3T3-L1 adipocytes also reduced FSP27 expression and diminished lipid droplet size.

Conclusions

These findings demonstrate that overexpression of PeriA in white adipocytes reduces lipid droplet size by decreasing FSP27 expression and thereby inducing a brown adipose tissue-like phenotype. Our data suggest that modulation of lipid droplet proteins in white adipocytes is a potential therapeutic strategy for the treatment of obesity and its related disorders.  相似文献   

18.
The canonical Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and disease. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and in mice. Here, we report that the beta-catenin antagonist Chibby (Cby) is required for adipocyte differentiation. Cby is expressed in adipose tissue in mice, and Cby protein levels increase during adipogenic differentiation of 3T3-L1 cells. Ectopic expression of Cby induces spontaneous differentiation of these cells into mature adipocytes to an extent similar to that of dominant-negative Tcf-4. In contrast, depletion of Cby by RNA interference potently blocks adipogenesis of 3T3-L1 and mouse embryonic stem cells. In support of this, embryonic fibroblasts obtained from Cby-deficient embryos display attenuated differentiation to the adipogenic lineage. Mechanistically, Cby promotes adipocyte differentiation, in part by inhibiting beta-catenin, since gain or loss of function of Cby influences beta-catenin signaling in 3T3-L1 cells. Our results therefore establish Cby as a novel proadipogenic factor required for adipocyte differentiation.  相似文献   

19.
Identification of the protein factors that regulate the adipogenesis and lipid metabolism of adipose tissue is critical for the understanding of the physiology and pathology of obesity and energy homeostasis. In this study, we found that G protein coupled receptor (GPCR) kinase 5 (GRK5) was expressed at a relatively high level in the white adipose tissue. When fed on a high-fat diet, GRK5(-/-) mice gained significantly less weight and had decreased WAT mass than their wild type littermates, which could not be attributed to alterations in food consumption or energy expenditure. However, GRK5(-/-) mice showed a 30-70% decreased expression of lipid metabolism and adipogenic genes in WAT. Moreover, GRK5(-/-) embryonic fibroblasts and preadipocytes exhibited 40-70% decreased expression of adipogenic genes and impaired adipocyte differentiation when induced in vitro. Taken together, these results suggest that GRK5 is an important regulator of adipogenesis and is crucial for the development of diet-induced obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号