首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alginate polymer was evaluated as a carrier for seed inoculation with a genetically modified strainPseudomonas fluorescens F113LacZY, which protects sugar-beet againstPythium-mediated damping-off. F113LacZY survived in alginate beads at 5 log10 CFU/ bead or higher counts for 8 weeks of storage, regardless of the conditions of incubation. In plant inoculation experiments, colonisation of the growing area of the root by F113LacZY, derived from alginate beads placed in the soil next to the seed or from an alginate coating around the seeds, was improved compared with application of just free cells of the strain. F113LacZY trapped in alginate beads was an effective producer of antifungal phloroglucinols as indicated by direct HPLC quantification of phloroglucinols and in vitro inhibition of both the indicator bacteriumBacillus subtilis A1 and the pathogenic fungusPythium ultimum. Alginate polymer represents a promising carrier for the delivery of biocontrol inoculants for root colonisation and production of antifungal metabolites.  相似文献   

2.
Whole cell microbial biosensors offer excellent possibilities for assaying the complex nature of the bioavailable and bioaccessible fraction of pollutants in contaminated soils, which currently cannot be easily addressed. This paper describes the application and evaluation of three microbial biosensor strains designed to detect the bioavailability and biodegradation of PCBs (and end-products) in contaminated soils and sediments. Polychlorinated biphenyls (PCBs) are considered to be one of the most wide spread, hazardous and persistent pollutants. Herein we describe that there was a positive correlation between the PCB levels within the samples and the percentage of biosensor cells that were expressing their reporter gene; gfp. Immobilisation of the biosensors in calcium alginate beads allowed easy and accurate detection of the biosensor strains in contaminated soil and sludge samples. The biosensors also showed that PCB degradation activity was occurring at a much greater level in Pea inoculated planted soil compared to inoculated unplanted soil indicating rhizoremediation (the removal of pollutants by plant root associated microbes) shows considerable promise as a solution for removing organic xenobiotics from the environment.  相似文献   

3.
Degradation of PCB congeners by bacterial strains   总被引:1,自引:0,他引:1  
Biological in situ methods are options for the remediation of contaminated sites. An approach to quantify biodegradation by soil bacteria was developed, combining experiment with mathematical modelling. We performed in vitro assays to investigate the potential and kinetics of the wild-type degrader, Burkholderia sp. strain LB400 (expressing bph) and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180 (expressing bph under different promoters) to metabolise individual congeners of polychlorinated biphenyls (PCBs). Kinetics of metabolism was analysed using the Monod model. Results revealed similar patterns of degradable PCB congeners for LB400 and F113L::1180. The degree of PCB degradation was comparable for LB400 and F113L::1180 but was much lower for F113rifpcb. In additional mesocosm experiments with PCB-contaminated soil, the F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere. Strain F113L::1180 in combination with willow plants is expected to degrade a large spectrum of PCB congeners in soil. The data from the experiments were used to calculate the time scale of the degradation process in a PCB-contaminated soil. The uncertainty of the model predictions due to the uncertainties of experimental removal velocities and bacterial cell density in soil was quantified.  相似文献   

4.
5.
Cells of Pseudomonas fluorescens F113 LacZY were encapsulated in alginate and their survival and ability to colonise sugar beet were evaluated. To assess survival, the formulation, composed of dry alginate microbeads of 300- to 700-μm diameter, was stored 1 year at 28±2 and 4±2°C and then tested against pathogenic fungi Pythium ultimum and Rhizoctonia solani in in vitro inhibition experiments. The same material was also used as inoculant for protection of sugar beet against Py. ultimum in microcosm experiments. The results obtained indicated that, although drying alginate beads resulted in a significant reduction of bacterial viability, the use of microbeads enabled a satisfactory level of root colonisation and protection, at least under microcosm conditions. The capability of the encapsulated cells to produce the antifungal metabolite 2,4-diacetylphloroglucinol (Phl) was not significantly affected by 12 months storage. Journal of Industrial Microbiology & Biotechnology (2001) 27, 337–342. Received 07 September 2000/ Accepted in revised form 08 May 2001  相似文献   

6.
The colonization ability of Pseudomonas fluorescens F113rif in alfalfa rhizosphere and its interactions with the alfalfa microsymbiont Sinorhizobium meliloti EFB1 has been analyzed. Both strains efficiently colonize the alfalfa rhizosphere in gnotobiotic systems and soil microcosms. Colonization dynamics of F113rif on alfalfa were similar to other plant systems previously studied but it is displaced by S. meliloti EFB1, lowering its population by one order of magnitude in co-inoculation experiments. GFP tagged strains used to study the colonization patterns by both strains indicated that P. fluorescens F113rif did not colonize root hairs while S. meliloti EFB1 extensively colonized this niche. Inoculation of F113rif had a deleterious effect on plants grown in gnotobiotic systems, possibly because of the production of HCN and the high populations reached in these systems. This effect was reversed by co-inoculation. Pseudomonas fluorescens F113 derivatives with biocontrol and bioremediation abilities have been developed in recent years. The results obtained support the possibility of using this bacterium in conjunction with alfalfa for biocontrol or rhizoremediation technologies.  相似文献   

7.
Delany  I.R.  Walsh  U.F.  Ross  I.  Fenton  A.M.  Corkery  D.M.  O'Gara  F. 《Plant and Soil》2001,232(1-2):195-205
Pseudomonas fluorescens F113 is an effective biocontrol agent against Pythium ultimum, the causative agent of damping-off of sugarbeet seedlings. Biocontrol is mediated via the production of the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl). A genetic approach was used to further enhance the biocontrol ability of F113. Two genetically modified (GM) strains, P. fluorescens F113Rif (pCU8.3) and P. fluorescens F113Rif (pCUP9), were developed for enhanced Phl production and assessed for biocontrol efficacy and impact on sugarbeet in microcosm experiments. The multicopy plasmid pCU8.3 contains the biosynthetic genes (phlA, C, B and D) and the putative permease gene (phlE) of F113 cloned into the rhizosphere stable plasmid pME6010, independent of external promoters. The plasmid pCUP9 consists of the Phl biosynthetic genes cloned downstream of the constitutive Plac promoter in pBBR1MCS. Introduction of pCU8.3 and pCUP9 into P. fluorescens F113 significantly altered the kinetics of Phl biosynthesis when grown in SA medium. A significant and substantial increase in Phl production by the GM strains was observed in the early logarithmic phase and stationary phase of growth compared with the wild-type strain. In microcosm, the two Phl overproducing strains proved to be as effective at controlling damping-off disease as the proprietary fungicide treatment, indicating the potential of genetic modification for plant disease control.  相似文献   

8.
Aims: To investigate the growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, microbial load and Pseudomonas fluorescens 2–79. Methods and Results: Alfalfa seeds pre‐inoculated with ≤101–103 CFU g?1 of salmonellae and with or without Ps. fluorescens 2–79 were sprouted in glass jars and the population of salmonellae were determined daily for up to 6 days. The population of salmonellae on germinating seeds reached the maximum 2–3 days after sprouting when total bacterial count reached the maximum (109 CFU g?1). The population of salmonellae on sprouting seeds not treated with Ps. fluorescens 2–79 showed a net increase of 3–4 log units. However, the population of salmonellae on alfalfa seeds treated with Ps. fluorescens 2–79 showed a net increase of only 1–2 log units. Disinfection of seeds with calcium hypochlorite enhanced the growth of salmonellae. Conclusions: Treatment of seeds with Ps. fluorescens 2–79 reduced the growth of salmonellae by 2–3 log units. Significance and Impact of the Study: The potential of Ps. fluorescens 2–79 as a biological agent for use in control of salmonellae on sprouting seeds was demonstrated and warrants further investigation.  相似文献   

9.
The introduction of bacteriophages could potentially be used as a control method to limit the population size of engineered bacteria that have been introduced into soil. Hence, the ability of a species-specific phage, R2f, to infect and lyse its host, a Pseudomonas fluorescens R2f transposon Tn5 derivative, in soil, was studied. Control experiments in liquid media revealed that productive lysis of host cells by phage R2f occurred when cells were freely suspended, whereas cells present in alginate beads resisted lysis. The presence of nutrients enhanced the degree of lysis as well as the production of phage progeny, both with the suspended cells and with cells escaped from the alginate beads. Experiments in which host cells and phage R2f were introduced into two soils of different texture revealed that host cells were primarily lysed in the presence of added nutrients, and phage reached highest titres in these nutrient-amended soils. Encapsulation of the host cells in alginate beads inhibited lysis by the phage in soil. Populations of free host cells introduced into soil that colonized the rhizosphere of wheat were not substantially lysed by phage R2f. However, P. fluorescens R2f populations colonizing the rhizosphere after introduction in alginate beads were reduced in size by a factor of 1,000. Cells migrating from the alginate beads towards the roots may have been in a state of enhanced metabolic activity, allowing for phage R2f infection and cell lysis. Correspondence to: J.D. van Elsas  相似文献   

10.
Abstract Previous studies have shown that inoculation of pea seeds with Pseudomonas fluorescens strains F113lacZY or F113G22 increased mineralization of organic nitrogen in the rhizosphere. In contrast, inoculation of the same strains onto wheat seeds reduced mineralization of N from organic residues incorporated into soil. In the present study, we report on a likely explanation of this phenomenon, which appears to be governed by the effect of plant-microbe interactions on bacterial-feeding nematodes and protozoa. In soil microcosm tests, inoculation of pea seeds with Pseudomonas fluorescens strains F113lacZY or F113G22 resulted in an increase in the number of nematodes and protozoa in the rhizosphere as compared to noninoculated controls. This trend was repeated using a model sand system into which the bacteriophagous nematode Caenorhabditis elegans was introduced. It was subsequently found that non-inoculated germinating pea seeds exerted a nematicidal effect on C. elegans, which was remedied by inoculation with either strain F113lacZY or F113G22. This suggests that nematicidal compounds released by the germinating pea seeds were metabolized by the microbial inoculants before they affected nematode populations in the spermosphere or rhizosphere of pea. In contrast, inoculation of wheat plants resulted in significantly lower nematode populations in the rhizosphere, whereas protozoan numbers were unaffected. No nematicidal effects of inoculated or noninoculated wheat seeds could be found, suggesting that microfaunal populations were affected at a later stage during plant growth. Because of their key roles in accelerating the turnover of microbially immobilized N and organic matter, plants that support a larger microfaunal population are likely to benefit from a higher availability of inorganic nitrogen. Therefore, an understanding of plant-microbe interactions and their effects on soil microfaunal populations is essential in order to assess the effects of microbial inocula on plant mineral nutrition. Received: 27 May 1999; Accepted: 15 July 1999; Online Publication: 17 December 1999  相似文献   

11.
Aim: To examine the biocontrol activity of broad‐range antagonists Serratia plymuthica IC1270, Pseudomonas fluorescens Q8r1‐96 and P. fluorescens B‐4117 against tumourigenic strains of Agrobacterium tumefaciens and A. vitis. Methods and Results: Under greenhouse conditions, the antagonists, applied via root soak prior to injecting Agrobacterium strains into the wounded stems, significantly suppressed tumour development on tomato seedlings. A derivative of P. fluorescens Q8r1‐96 tagged with a gfp reporter, as well as P. fluorescens B‐4117 and S. plymuthica IC1270 marked with rifampicin resistance, stably persisted in tomato tissues for at least 1 month. Mutants of P. fluorescens Q8r1‐96 and S. plymuthica IC1270 deficient in 2,4‐diacetylphloroglucinol or pyrrolnitrin production, respectively, also proficiently suppressed the tumour development, indicating that these antibiotics are not responsible for the observed biocontrol effect on crown gall disease. The volatile organic compounds (VOCs) produced by the tested P. fluorescens and S. plymuthica strains inhibited the growth of A. tumefaciens and A. vitis strains in vitro. Solid‐phase microextraction‐gas chromatography‐mass spectrometry analysis revealed dimethyl disulfide (DMDS) as the major headspace volatile produced by S. plymuthica IC1270; it strongly suppressed Agrobacterium growth in vitro and was emitted by tomato plants treated with S. plymuthica IC1270. 1‐Undecene was the main volatile emitted by the examined P. fluorescens strains, with other volatiles, including DMDS, being detected in only relatively low quantities. Conclusions: S. plymuthica IC1270, P. fluorescens B‐4117 and P. fluorescens Q8r1‐96 can be used as novel biocontrol agents of pathogenic Agrobacterium. VOCs, and specifically DMDS, might be involved in the suppression of oncogenicity in tomato plants. However, the role of specific volatiles in the biocontrol activity remains to be elucidated. Significance and Impact of the Study: The advantage of applying these antagonists lies in their multiple activities against a number of plant pathogens, including Agrobacterium.  相似文献   

12.
Summary A method was developed for plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus. Shoot tips excised from in vitro proliferated shoots were encapsulated in calcium alginate beads. The best gel complexation was achieved using 3% sodium alginate and 75 mM CaCl2·2H2O. Maximum percentage response for conversion of encapsulated shoot tips into plantlets was 90% after 5 wk of culture on Murashige and Skoog (MS) medium without plant growth regulator. The regrowth ability of encapsulated shoot tips was affected by the concentration of sodium alginate, storage duration, and the presence or absence of MS nutrients in calcium alginate beads. Plantlets with well-developed shoot and roots were transferred to pots containing an autoclaved mixture of soilrite and peat moss (1∶1). The conversion of encapsulated shoot tips into plantlets also occurred when calcium alginate beads were directly sown in autoclaved soilrite moistened with 1/4-MS salts. Encapsulation of vegetative propagules in calcium alginate beads can be used as an alternative to synthetic seeds derived from somatic embryos.  相似文献   

13.
Although microevolution has been shown to play an important role in pairwise antagonistic species interactions, its importance in more complex communities has received little attention. Here, we used two Pseudomonas fluorescens prey bacterial strains (SBW25 and F113) and Tetrahymena thermophila protist predator to study how rapid evolution affects the structuring of predator–prey communities. Both bacterial strains coexisted in the absence of predation, and F113 was competitively excluded in the presence of both SBW25 and predator during the 24‐day experiment, an initially surprising result given that F113 was originally poorer at growing, but more resistant to predation. However, this can be explained by SBW25 evolving greater antipredatory defence with a lower growth cost than F113. These results show that rapid prey evolution can alter the structure of predator–prey communities, having different effects depending on the initial composition of the evolving community. From a more applied perspective, our results suggest that the effectiveness of biocontrol bacteria, such as F113, could be weaker in communities characterized by intense bacterial competition and protist predation.  相似文献   

14.
Alginate-encapsulated and unencapsulated cells of Pseudomonas fluorescens Rsf were introduced into soil microcosms with and without wheat plants to evaluate bacterial survival and colonization of the rhizoplane and rhizosphere. Encapsualtion of cells in alginate amended with skim milk or with skim milk plus bentonite clay significantly enchanced long-term survival of the cells. There was a negligible effect on long-term bacterial survival when cells were encapsulated in alginate amended with TY medium or soil extract, as compared to water. Drying of beads resulted in a significant reduction in bacterial viability. After addition to soil, cells in dried beads increased in numbers and exhibited stable population densities, whereas cells added in moist beads showed stable dynamics at a higher level. Cells encapsulated in dried beads or fresh beads survived better than unencapsulated cells added to soil. Both cells in moist and dried alginate beads also survide a dry/wet cycle in soil, whereas unencapsulated cells were sensitive to these moisture fluctuations. Shortly after inoculation and 63 days after this, cells from moist beads colonized wheat roots at significantly higher levels than unencapsulated cells, whereas cells in dried beads did so at levels similat to unencapsulated cells. Cells in beads initially placed at different distance from developing root mat were able to move towards and colonize the rhizosphere, at levels of roughly 104 to 106 colony-forming units fo P. fluorescens R2f per gram of dry soil. Correspondence to: J. T. Trevors or J. D. van Elsas  相似文献   

15.
Chlorobenzoic acids (CBA) are frequently dead-end products of partial aerobic biodegradation of polychlorinated biphenyls (PCB). When CBA produced from PCB accumulate in the growth medium, they can inhibit the bacterial growth and consequently, slow down PCB biodegradation. In this study, the effects of seven mono- and dichlorinated CBA on growth of Pseudomonas stutzeri on different substrates and on the PCB degradation by this strain in a liquid mineral medium were tested. 3-CBA was the strongest growth inhibitor for P. stutzeri growing on glucose, benzoate and biphenyl. It was found to inhibit heavily the elimination of some di- and trichlorinated biphenyls. In contrast, its influence on the elimination of more chlorinated congeners was much less significant.The authors are with the Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Technical University, 812 37 Bratislava, Slovakia.  相似文献   

16.
Summary Hydrogels of alginate, phospho guar gum, carboxymethyl guar gum, k-carrageenan and cellulose sulphate, respectively were tested to find easily redissolvable gels. The entomopathogenic nematode, Heterorhabditis sp., was entrapped in calcium alginate beads, calcium alginate hollow spheres and foils made from different hydrogels. Emigration from calcium alginate beads after 7 days of storage was 100 % at room temperature and was lowered to 6 % at 6 °C, whereas no emigration from calcium alginate hollow spheres was found at either temperature. Highly concentrated polymer foils produced on gauze showed reduced emigration with a survival of 80 % after 24 h compared to foils produced on glass slides. Calcium alginate beads can be used for a controlled release of the nematode into the environment, while hollow spheres and foils are suitable for storage.Dedicated to Prof. Dr. F. Wagner on the occasion of his 65th birthday  相似文献   

17.
Aims: To purify and characterize an exo‐acting chitinolytic enzyme produced from a Gram‐negative bacterium Pseudomonas fluorescens JK‐0412. Methods and Results: A chitinolytic bacterial strain that showed confluent growth on a minimal medium containing powder chitin as the sole carbon source was isolated and identified based on a 16S ribosomal DNA sequence analysis and named Ps. fluorescens JK‐0412. From the culture filtrates of this strain, a chito‐oligosaccharides‐degrading enzyme was purified to apparent homogeneity with a molecular mass of 50 kDa on SDS–PAGE gels. The kinetics, optimum pH and temperature, and substrate specificity of the purified enzyme (named as NagA) were determined. Conclusions: An extracellular chitinolytic enzyme was purified from the Ps. fluorescens JK‐0412 and shown to be an exo‐type β‐N‐acetylglucosaminidase yielding GlcNAc as the final product from the natural chito‐oligosaccharides, (GlcNAc)n, n = 2–5. Significance and Impact of the Study: As NagA is secreted extracellularly in the presence of colloidal chitin, Ps. fluorescens JK‐0412 can be recognized as a potent producer for industry‐level and cost‐effective production of chitinolytic enzyme. This enzyme appears to have potential applications as an efficient tool for the degradation of chitinous materials and industry‐level production of GlcNAc. To the best of our knowledge, this is the first report on an exo‐type chitinolytic enzyme of Pseudomonas species.  相似文献   

18.
Waste Water Bacterial Isolates Resistant to Heavy Metals and Antibiotics   总被引:3,自引:0,他引:3  
Sewage water of Casablanca, an industrial city in Morocco, was studied for microorganisms resistant to heavy metals. Isolates were purified and collected on agar slants to be screened for resistance to heavy metals, including mercury in vitro. The strains that showed high resistance to heavy metals were also studied for their resistance to antibiotics and aromatic hydrocarbons. Results indicated that the strains most resistant to all tested products belonged to Ps. fluorescens, Ps. aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus sp. These strains exhibit high minimal inhibitory concentrations for heavy metals such as cadmium (2 mm) or mercury (1.2 mm). Growth of Ps. fluorescens and Klebsiella pneumoniae in the presence of heavy metals was also determined, and the growth curves indicated that mercury, copper, and zinc present a slight inhibitory action, while cadmium and silver could have a potent inhibitory action on growth compared with the controls. These studies also investigated growth in media containing aromatic compounds as the sole source of carbon. The results demonstrate that these strains could be good candidates for remediation of some heavy metals and aromatic compounds in heavily polluted sites. Received: 23 December 1999 / Accepted: 6 April 2000  相似文献   

19.
Environmental monitoring of bacteria using phage-based biosensors has been widely developed for many different species. However, there are only a few available methods to detect specific bacteriophages in raw environmental samples. In this work, we developed a simple and efficient assay to rapidly monitor the phage content of a given sample. The assay is based on the bistable expression of the Salmonella enterica opvAB operon. Under regular growth conditions, opvAB is only expressed by a small fraction of the bacterial subpopulation. In the OpvABON subpopulation, synthesis of the OpvA and OpvB products shortens the O-antigen and confers resistance to phages that use LPS as a receptor. As a consequence, the OpvABON subpopulation is selected in the presence of such phages. Using an opvAB::gfp fusion, we could monitor LPS-binding phages in various media, including raw water samples. To enlarge our phage-biosensor panoply, we also developed biosensors able to detect LPS, as well as protein-binding coliphages. Moreover, the combination of these tools allowed to identify the bacterial receptor triggering phage infection. The epigenetic opvAB::gfp biosensor thus comes in different flavours to detect a wide range of bacteriophages and identify the type of receptor they recognize.  相似文献   

20.
Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free‐living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm lack flagella. To test the correlation between biofilm formation and rhizosphere colonization, we have used P. fluorescens F113 hypermotile derivatives and mutants affected in regulatory genes which in other bacteria modulate biofilm development, namely gacS (G), sadB (S) and wspR (W). Mutants affected in these three genes and a hypermotile variant (V35) isolated from the rhizosphere were impaired in biofilm formation on abiotic surfaces, but colonized the alfalfa root apex as efficiently as the wild‐type strain, indicating that biofilm formation on abiotic surfaces and rhizosphere colonization follow different regulatory pathways in P. fluorescens. Furthermore, a triple mutant gacSsadBwspR (GSW) and V35 were more competitive than the wild‐type strain for root‐tip colonization, suggesting that motility is more relevant in this environment than the ability to form biofilms on abiotic surfaces. Microscopy showed the same root colonization pattern for P. fluorescens F113 and all the derivatives: extensive microcolonies, apparently held to the rhizoplane by a mucigel that seems to be plant produced. Therefore, the ability to form biofilms on abiotic surfaces does not necessarily correlates with efficient rhizosphere colonization or competitive colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号