首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries.  相似文献   

2.
Abstract: The response of plasminogen activator activity in the CNS to peripheral nerve axotomy was examined in vivo. After transection of the rat facial nerve, a transient increase in plasminogen activator activity was observed in the facial nucleus on the operated side with maximal activity 3–5 days after lesion. This activity was inhibited by the urokinase-specific inhibitor amiloride but not by antibodies against tissue plasminogen activator. The molecular mass of the induced form of plasminogen activator was estimated to be ∼48 kDa. An in vitro assay of plasminogen hydrolysis also demonstrated an increase in amiloride-sensitive plasminogen activator activity in facial nerve extracts following facial nerve axotomy. These data indicate that the plasminogen activator activity induced in the facial nucleus following axotomy of facial motoneurons is of the urokinase type. It is suggested that the urokinase-type plasminogen activator might play a role in the events accompanying injury and regeneration in the facial nucleus following motoneuron lesion.  相似文献   

3.
Calcitonin gene-related peptide-like immunoreactivity (CGRP-ir) is displayed by motoneurons that innervate striated muscle but is absent from preganglionic parasympathetic motoneurons. One hypothesis to explain this is that CGRP gene expression in motoneurons is, in part, dependent on influences from the innervated organ. To test this hypothesis, we cross-anastomosed the right hypoglossal and cervical vagal nerves of rats so that the vagal motoneurons grew to innervate the musculature of the tongue. Following a recovery period of 17 to 52 weeks, the distribution of CGRP-ir in the dorsal motor vagal nucleus was determined in both cross-anastomosed animals and self-anastomosed control animals. Successful reinnervation of the tongue musculature by vagal motoneurons was demonstrated by showing that electrical stimulation of the central vagus/peripheral hypoglossal nerve produced a twitch of the tongue muscles. Motoneurones of the dorsal motor vagal nucleus, which now innervated the tongue were found to express CGRP-ir, which was evident from the double labeling of neurons with both horseradish peroxidase and CGRP-ir. Motoneurones of the dorsal motor vagal nucleus contralateral to the cross-anastomosis remained CGRP negative. Similarly, motoneurons of the dorsal motor vagal nucleus in control animals where the vagus nerve was self-anastomosed remained CGRP negative, showing that an induction of CGRP expression is not a result of nerve section itself. We suggest that a signal from the striated muscle transported retrogradely via the motor axon regulates expression of CGRP-ir in motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth.OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers.All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.  相似文献   

5.
Isolated injury to the motor branch of the ulnar nerve is a relatively rare injury, often initially misdiagnosed. If repair is attempted through the original laceration without complete motor branch exposure, results can be less than satisfactory. A recent case illustrates this injury and provides us with an opportunity to review the surgical anatomy of the motor branch of the ulnar nerve. The surgical approach to the motor branch has been detailed and specifically emphasizes complete motor branch exposure from the main ulnar nerve trunk to the most distal motor branch entry into the adductor pollicis muscle. This approach permits definition of the exact level of the nerve injury, preservation of any intact proximal fine motor branches, and facilitates the mechanics of nerve repair.  相似文献   

6.
In order to give a neuroanatomical evidence to the mechanism of shifting from sucking to biting, we investigated in prenatal, newborn and postnatal mice whether there is a time difference in the neurogenesis of the neurons relative to sucking and biting or in the histogenesis of their peripheral effector organs by the HRP labeling technique and electron microscopy. The results obtained are as follows. (1) At birth the facial motoneurons exceed the trigeminal motoneurons in cell area and development. (2) After birth, the trigeminal motoneurons grow rapidly and outstrip the growth of the facial motoneurons at the age of 6 days. (3) Thereafter, the cell area of both neuron types continues to increase gradually. (4) The initial sign of the alpha motor end plates is found in the orbicularis oris muscle innervated by the facial nerve in 17-day-old fetuses, while that of the trigeminal nerve is delayed in the masseter muscle of 18-day-old fetuses. (5) The initial sign of the muscle spindle appears with the sensory terminals in the masseter muscle of 17-day-old fetuses and the fundamental structure of the muscle spindle is formed in 4-day-old youngs. (6) Myelination of the facial nerve begins in 3-day-old youngs, while that of the trigeminal nerve becomes apparent in 4- or 5-day-old youngs. From these bases, it is obvious that the facial nerve elements related to sucking are firstly developed at birth and that the differentiation of the trigeminal nerve elements related to biting is rapidly accelerated after birth.  相似文献   

7.
8.
Testosterone propionate (TP) administered at the time of facial nerve injury in the hamster accelerates the rate of regeneration. In this study, we tested the hypothesis that the mechanism by which TP augments peripheral nerve regeneration involves regulation of glial fibrillary acidic protein (GFAP) mRNA in the facial motor nucleus. Castrated male hamsters were subjected to right facial nerve transection, with half the animals implanted subcutaneously with Silastic capsules containing exogenous TP and the remainder sham implanted. Postoperative survival times were 0.25, 1, 2, 4, 7, and 14 d. Qualitative/quantitative analyses of both film and emulsion autoradiograms were accomplished. Axotomy, with or without TP, resulted in a dramatic increase in GFAP mRNA levels by 1 d postoperative on the axotomized side, relative to controls. GFAP mRNA levels remained elevated throughout all postoperative times in both the nonhormone- and TP-treated animals. Qualitative examination of the film autoradiograms indicated a generalized decrease in the amount of GFAP mRNA in the control and axotomized nuclei of TP-treated animals when compared to the control and axotomized nuclei, respectively, of nonhormone-treated animals. Statistical comparison of the values obtained for both the film and emulsion autoradiograms confirmed this impression. Thus, while the injury-induced increases in GFAP mRNA expression were not blocked by TP, the overall extent of the increase was significantly tempered by steroid treatment. These data suggest that hormonal modulation of the astrocytic response to peripheral nerve injury may be a contributing factor in the ability of steroids to enhance the regenerative capacities of injured motor neurons.  相似文献   

9.
We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.  相似文献   

10.
Yang P  Ying DJ  Song L  Sun JS 《生理学报》2003,55(4):428-434
采用大鼠坐骨神经切断损伤模型,行神经外膜端端对线缝合,术中依不同组别,动物于神经缝合处远端0.5cm处分别注射人的正义和反义bcl-2重组腺病毒(Ad/s-bcl-2、Ad/as-bcl-2),报道基因重组腺病毒(Ad/lacZ)和生理盐水。术后48h,7d,15d和30d常规灌注固定大鼠,取L4-L6脊髓节段,应用X-gal染色、bel-2原位杂交和免疫组化染色、TUNEL染色以及乙酰胆碱酯酶(AChE)组织化学染色方法,观察到外源基因能在脊髓中表达,同时外源性Ad/s-bcl-2能显著减少L4到L6节段脊髓前角运动神经元凋亡的数目,减少脊髓前角运动神经元中因坐骨神经切断导致的AChE活性的降低幅度,并加快其恢复。而Ad/as-bcl-2可显著增加坐骨神经切断诱导的脊髓前角运动神经元凋亡数目以及AChE活性降低幅度,并延缓其恢复。这些观察结果表明,外源性bcl-2能保护周围神经切断后引起的脊髓运动神经元损伤。  相似文献   

11.
Motoneuron loss is a significant medical problem, capable of causing severe movement disorders or even death. We have previously shown that motoneuron death induces marked dendritic atrophy in surviving nearby motoneurons. Additionally, in quadriceps motoneurons, this atrophy is accompanied by decreases in motor nerve activity. However, treatment with testosterone partially attenuates changes in both the morphology and activation of quadriceps motoneurons. Testosterone has an even larger neuroprotective effect on the morphology of motoneurons of the spinal nucleus of the bulbocavernosus (SNB), in which testosterone treatment can completely prevent dendritic atrophy. The present experiment was performed to determine whether the greater neuroprotective effect of testosterone on SNB motoneuron morphology was accompanied by a greater neuroprotective effect on motor activation. Right side SNB motoneurons were killed by intramuscular injection of cholera toxin‐conjugated saporin in adult male Sprague‐Dawley rats. Animals were either given Silastic testosterone implants or left untreated. Four weeks later, left side SNB motor activation was assessed with peripheral nerve recording. The death of right side SNB motoneurons resulted in several changes in the electrophysiological response properties of surviving left side SNB motoneurons, including decreased background activity, increased response latency, increased activity duration, and decreased motoneuron recruitment. Treatment with exogenous testosterone attenuated the increase in activity duration and completely prevented the decrease in motoneuron recruitment. These data provide a functional correlate to the known protective effects of testosterone treatment on the morphology of these motoneurons, and further support a role for testosterone as a therapeutic agent in the injured nervous system. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

12.
Shu L  Dong YR  Yan WH  Zhai Y  Wang Y  Li W 《生理学报》2011,63(4):291-299
坐骨神经损伤是临床常见的周围神经疾病。神经损伤后再生肌肉和运动神经元会出现各种功能障碍,虽然其中一部分因素已被阐明,但多局限于受损神经局部,而对于再生后脊髓运动神经元的回返性抑制(recurrent inhibition,RI)通路的功能变化却很少被报道。本文研究大鼠短暂坐骨神经损伤后,恢复神经再支配(reinnervation)情况下,脊髓RI通路的功能变化。在正常或坐骨神经挤压(crush)受损后的成年大鼠上,通过刺激离断的脊髓背根(L5),在外侧腓肠肌-比目鱼肌(lateral gas-trocnemius-soleus,LG-S)神经或内侧腓肠肌(medial gastrocnemius,MG)神经记录单突触反射(monosynaptic reflex,MSR),并同时在另一神经给予条件性刺激,以检测LG-S和MG运动神经元间RI的变化。结果显示:(1)脊髓运动神经元的RI在坐骨神经挤压受损后即基本丢失(<5周),至损伤6周后部分恢复至正常的50%,并至少维持至损伤14周后;(2)一侧的坐骨神经损伤对对侧的RI没有影响;(3)外周神经损伤后,免疫组织化学方法显示脊髓运动神经元数目本身并不发生减少。以上...  相似文献   

13.
An incomplete motor nerve injury or a partial loss of motoneurons leads to a partial denervation of skeletal muscle. As part of a compensatory response, the remaining intact motoneurons undergo peripheral sprouting and increase their motor unit size. Our knowledge about the responses in the more proximal parts of these sprouting motoneurons is sparse, however. We investigated the effects of an incomplete transection of the medial gastrocnemius (MG) nerve in the adult cat on the morphology of the intramedullary axon and axon collateral systems of the remaining intact MG motoneurons. At twelve weeks following the partial transection of the MG nerve, intracellular recording and labeling techniques were used to deposit horseradish peroxidase into single intact MG motoneurons for detailed morphological studies. The light microscopic appearance and caliber of the intramedullary stem motor axons of the intact MG motoneurons were indistinguishable from controls. The number and size of the intramedullary motoraxon collateral systems were also unchanged. However, frequent and marked hypertrophy of the distal portions of the motoraxon collaterals was encountered. Electron microscopic studies of the hypertrophied collaterals demonstrated abnormal accumulations of disorganized neurofilaments arranged in bundles or whorls. The morphological changes were indistinguishable from the neurofilamentous hypertrophy that has previously been reported in Wallerian degeneration, in experimental and human motor neuron disease and in some regenerating axonal processes of spinal motoneurons. We conclude that, neurofilamentous hypertrophy of the intramedullary arbors of motor axons may also be part of a reactive and non-degenerative response in intact motoneurons undergoing compensatory peripheral sprouting.  相似文献   

14.
Although the peripheral nerve is capable of regeneration, only a small minority of patients regain normal function after surgical reconstruction of a major peripheral nerve lesion, resulting in a severe and lasting negative impact on the quality of life. Glial cell-line derived neurotrophic factor (GDNF) has potent survival- and outgrowth-promoting effects on motoneurons, but locally elevated levels of GDNF cause trapping of regenerating axons and the formation of nerve coils. This phenomenon has been called the “candy store” effect. In this study we created gradients of GDNF in the sciatic nerve after a ventral root avulsion. This approach also allowed us to study the effect of increasing concentrations of GDNF on Schwann cell proliferation and morphology in the injured peripheral nerve. We demonstrate that lentiviral vectors can be used to create a 4 cm long GDNF gradient in the intact and lesioned rat sciatic nerve. Nerve coils were formed throughout the gradient and the number and size of the nerve coils increased with increasing GDNF levels in the nerve. In the nerve coils, Schwann cell density is increased, their morphology is disrupted and myelination of axons is severely impaired. The total number of regenerated and surviving motoneurons is not enhanced after the distal application of a GDNF gradient, but increased sprouting does result in higher number of motor axon in the distal segment of the sciatic nerve. These results show that lentiviral vector mediated overexpression of GDNF exerts multiple effects on both Schwann cells and axons and that nerve coil formation already occurs at relatively low concentrations of exogenous GDNF. Controlled expression of GDNF, by using a viral vector with regulatable GDNF expression, may be required to avoid motor axon trapping and to prevent the effects on Schwann cell proliferation and myelination.  相似文献   

15.
周围神经损伤的修复是临床外科中的一个难题。尽管周围神经系统在损伤后具有内在的自我修复能力,但一般很难达到完全功能恢复,特别是近端的损伤或者大段的神经缺损。近年来,基于干细胞的细胞治疗为周围神经再生带来了曙光。大量研究表明干细胞可促进周围神经损伤的再生,然而其作用机制还不明确。为此,本文将对脂肪干细胞在周围神经损伤修复中作用包括向雪旺细胞分化、神经营养、血管形成、神经元保护、靶器官保护和免疫调节等作用进行归纳,并进一步探讨其潜在的作用机制。  相似文献   

16.
17.
Abstract: Several gangliosides of human nervous tissues have been reported to be potential target antigens in autoimmune neuropathies. To explain the diversity of clinical symptoms in patients with antiganglioside antibodies, we have searched for ganglioside antigens that are specific to individual nervous tissues such as motoneurons, peripheral motor nerves, and sensory nerves. Although the major ganglioside compositions were not different among human peripheral motor and sensory nerves, fucosyl-GM1 was found to be expressed in sensory nervous tissue but not in spinal cord, motor nerve, and sympathetic ganglia. Sera from several patients with sensory nerve involvement also reacted with fucosyl-GM1 as well as GM1. Thus, fucosyl-GM1 may be a responsible target antigen for developing sensory symptoms in some patients with autoimmune neuropathies.  相似文献   

18.
A multidisciplinary approach to the study of peripheral nerve regeneration in the cat has been presented. The purpose of this work has been to determine if pulsing electromagnetic field (PEMF) therapy can enhance peripheral nerve regeneration after injury. In equal groups of animals, two types of pulsing electromagnetic field treatment were compared with untreated controls. All animals underwent quantitative electrophysiologic and morphologic assessment at the area of injury. In addition, muscle fiber sizing in the periphery and retrograde labeling of anterior horn motoneurons with horseradish peroxidase were studied. Results have shown no statistical differences between the groups in electrophysiologic or morphologic parameters. However, in animals treated with a pulse-burst electromagnetic field there was a statistically significant improvement in the labeling and localization of anterior horn cells in the central nervous system. These results indicate that pulse-burst electromagnetic radiation can increase the numbers of motor neurons that reestablish appropriate connections to the periphery after nerve injury. It remains to be seen if this improved spinal cord organization can translate to improved peripheral functional return.  相似文献   

19.
Tong  Jianxin X  Rich  Keith M 《Brain Cell Biology》1997,26(5):339-347
Immature rat facial motoneurons are very sensitive to injury with nearly 80% dying during the first week after axotomy. This motoneuron death is apoptotic, similar to that induced in neurons after tropic factor withdrawal. The diphenylpiperazines, flunarizine and cinnarizine, protect dorsal root ganglion neurons from death after withdrawal of trophic support, i.e., nerve growth factor withdrawal, in vitro. Similarly, the monoamine oxidase inhibitor, deprenyl, promotes survival of facial motoneurons after axotomy. These pharmacological agents were assessed both alone and in combination for their ability to prevent death in non-nerve growth factor dependent CNS motoneurons after facial nerve axotomy in newborn rats. Long-term experiments were done with the diphenylpiperazines to evaluate potential enhancement of regeneration. Facial nerve transection resulted in 78% neuronal loss in the injured compared with the contralateral, uninjured nucleus. Systemic administration of diphenylpiperazines for 1 week after facial nerve transection doubled the number of surviving motoneurons from 23% to 47%. Similar results were obtained with deprenyl. Combinations of diphenylpiperazines and deprenyl provide a similar degree of neuronal protection 1 week after injury as that obtained by either agent alone. We assessed the ability of diphenylpiperazines to protect facial motoneurons from death over a prolonged period and enhance subsequent regeneration. Motor neuron counts in rats treated with diphenylpiperazines for 1 month after injury and assessed 2 months later demonstrated long-term enhancement of neuronal protection with an increase of 45% in the number of horseradish peroxidase-labelled motoneurons. The diphenylpiperazines group had ~80% more regenerated myelinated axons in the distal facial nerve than the control group. Thus, diphenylpiperazine treatment during the first month after injury provides long-term protection of non-nerve growth factor dependent CNS motoneurons with subsequent potentiation of long-term facial nerve regeneration.  相似文献   

20.
Myelin undergoes various changes after nerve injury, and c‐Jun has a close relationship with Schwann cells (SCs). However, it remains unclear whether c‐Jun can be involved in nerve repair by regulating ferroptosis. To explore this, we first set up a facial nerve injury model and detected the changes of ferroptosis‐related proteins and c‐Jun by immunofluorescence and Western blot. Then, we cultured RSC 96 and pSCs, and studied the potential regulatory relationships by a combination of experimental methods such as CCK‐8, ELISA, immunofluorescence, qRT‐PCR, Western blot and viral transfection. Finally, we corroborated the role of c‐Jun through animal experiments. Our experiments revealed that ferroptosis occurs after facial nerve injury. Erastin decreased GPX4, c‐Jun proteins and GSH content, while PTGS2, NRF2, HO‐1 proteins, MDA, Fe2+ and ROS contents increased. This effect was inhibited after c‐Jun overexpression but was reversed after the addition of c‐Jun siRNA. Besides, we proved in vivo that c‐Jun could inhibit ferroptosis and promote the recovery of facial nerve function. In conclusion, our study identified the relationship between c‐Jun and ferroptosis during peripheral nerve injury repair, which provides new ideas for studying peripheral nerve injury and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号