首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Runs of homozygosity (ROHs) are recognized signature of recessive inheritance. Contributions of ROHs to the genetic architecture of coronary artery disease and regulation of gene expression in cells relevant to atherosclerosis are not known. Our combined analysis of 24,320 individuals from 11 populations of white European ethnicity showed an association between coronary artery disease and both the count and the size of ROHs. Individuals with coronary artery disease had approximately 0.63 (95% CI: 0.4–0.8) excess of ROHs when compared to coronary-artery-disease-free control subjects (p = 1.49 × 10−9). The average total length of ROHs was approximately 1,046.92 (95% CI: 634.4–1,459.5) kb greater in individuals with coronary artery disease than control subjects (p = 6.61 × 10−7). None of the identified individual ROHs was associated with coronary artery disease after correction for multiple testing. However, in aggregate burden analysis, ROHs favoring increased risk of coronary artery disease were much more common than those showing the opposite direction of association with coronary artery disease (p = 2.69 × 10−33). Individual ROHs showed significant associations with monocyte and macrophage expression of genes in their close proximity—subjects with several individual ROHs showed significant differences in the expression of 44 mRNAs in monocytes and 17 mRNAs in macrophages when compared to subjects without those ROHs. This study provides evidence for an excess of homozygosity in coronary artery disease in outbred populations and suggest the potential biological relevance of ROHs in cells of importance to the pathogenesis of atherosclerosis.  相似文献   

2.
Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10−20) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10−11) near ETS1; 3q28 (rs6444305, p = 1.10 × 10−10) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10−10) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10−8) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10−67 to 2.67 × 10−70). Additional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] = 1.44; p = 4.59 × 10−16) and rs3130437 in HLA class I (ORper-allele = 1.23; p = 8.23 × 10−9). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.  相似文献   

3.
4.
We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 109 callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10−9 (95% confidence interval = 1.0 × 10−9 − 6.1 × 10−9) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 106. At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10−9 (95% confidence interval = 0.7 × 10−9 − 11 × 10−9).  相似文献   

5.
Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQβ1Leu26 (p valueMeta = 1.24 × 10−14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQβ1Pro55 (p valueMeta = 8.23 × 10−11) located in the peptide binding region was positively associated, independently of HLA-DQβ1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB103:01, and HLA-DRB101:01. Additionally, HCV persistence classical alleles tagged by HLA-DQβ1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10−38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQβ1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.  相似文献   

6.
In this paper, we use Stokes, Brinkman and Darcy equations to approximate the porous continuum media of ligament tissues respectively, simulate the flow field with FLUENT software, and study the shear stress on the cell surface due to the interstitial fluid flow. Since the Brinkman equation approaches Stokes equation well in high hydraulic permeability (kp) condition (kp ≥1.0×10-8 m2 in our numerical simulation), and it is an approximation to Darcy model in low kp condition (kp ≤5.0×10-12 m2 in our numerical simulation), we used the Brinkman model to simulate the interstitial fluid flow in the ligament where kp is approximately 1.0×10-16 m2. It shows kp and anisotropic property have a little effect on the flow field, but have a great effect on the shear stress on the membrane of interstitial cells (τcell). There is a linear relationship between τcell and , when kp =1.0×10-16 m2 and the maximum τcell (τcell,max) is approximately 10 Pa. The anisotropic property will affect τcell''s distribution on the cell surface. When kx/ky>1, low τcell dominates the cell, while when kx/ky<1, high τcell dominants the cell.  相似文献   

7.
We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB104. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.  相似文献   

8.
Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10−13). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10−40) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10−26) and lignoceric acid (P = 3.20 × 10−21). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.  相似文献   

9.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2,6-dimethoxyphenol (Km = 2.6 × 10−5 ± 7 × 10−6 M), catechol (Km = 2.5 × 10−4 ± 1 × 10−5 M), pyrogallol (Km = 3.1 × 10−4 ± 4 × 10−5 M), and guaiacol (Km = 5.1 × 10−4 ± 2 × 10−5 M). In addition, the laccase catalyzed the polymerization of 1,8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen’s hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

10.
Through use of commercially available DnaK proteins and anti-DnaK monoclonal antibodies, a competitive enzyme-linked immunosorbent assay was developed to quantify this heat shock protein in Escherichia coli ATCC 25922 subjected to various heating regimens. For a given process lethality (F7010 of 1, 3, and 5 min), the intracellular concentration of DnaK in E. coli varied with the heating temperature (50 or 55°C). In fact, the highest DnaK concentrations were found after treatments at the lower temperature (50°C) applied for a longer time. Residual DnaK after heating was found to be necessary for cell recovery, and additional DnaK was produced during the recovery process. Overall, higher intracellular concentrations of DnaK tended to enhance cell resistance to a subsequent lethal stress. Indeed, E. coli cells that had undergone a sublethal heat shock (105 min at 55°C, F7010 = 3 min) accompanied by a 12-h recovery (containing 76,786 ± 25,230 molecules/cell) resisted better than exponentially growing cells (38,500 ± 6,056 molecules/cell) when later heated to 60°C for 50 min (F7010 = 5 min). Results reported here suggest that using stress protein to determine cell adaptation and survival, rather than cell counts alone, may lead to more efficient heat treatment.  相似文献   

11.
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.  相似文献   

12.
Systemic lupus erythematosus (SLE) is a chronic heterogeneous autoimmune disorder characterized by the loss of tolerance to self-antigens and dysregulated interferon responses. The etiology of SLE is complex, involving both heritable and environmental factors. Candidate-gene studies and genome-wide association (GWA) scans have been successful in identifying new loci that contribute to disease susceptibility; however, much of the heritable risk has yet to be identified. In this study, we sought to replicate 1,580 variants showing suggestive association with SLE in a previously published GWA scan of European Americans; we tested a multiethnic population consisting of 7,998 SLE cases and 7,492 controls of European, African American, Asian, Hispanic, Gullah, and Amerindian ancestry to find association with the disease. Several genes relevant to immunological pathways showed association with SLE. Three loci exceeded the genome-wide significance threshold: interferon regulatory factor 8 (IRF8; rs11644034; pmeta-Euro = 2.08 × 10−10), transmembrane protein 39A (TMEM39A; rs1132200; pmeta-all = 8.62 × 10−9), and 17q21 (rs1453560; pmeta-all = 3.48 × 10−10) between IKAROS family of zinc finger 3 (AIOLOS; IKZF3) and zona pellucida binding protein 2 (ZPBP2). Fine mapping, resequencing, imputation, and haplotype analysis of IRF8 indicated that three independent effects tagged by rs8046526, rs450443, and rs4843869, respectively, were required for risk in individuals of European ancestry. Eleven additional replicated effects (5 × 10−8 < pmeta-Euro < 9.99 × 10−5) were observed with CFHR1, CADM2, LOC730109/IL12A, LPP, LOC63920, SLU7, ADAMTSL1, C10orf64, OR8D4, FAM19A2, and STXBP6. The results of this study increase the number of confirmed SLE risk loci and identify others warranting further investigation.  相似文献   

13.
This study aimed to describe the worst-case scenarios (WCS) of professional soccer players by playing position in different durations and analyse WCS considering different contextual variables (match half, match location and match outcome). A longitudinal study was conducted in a professional soccer team. Data were collected from different WCS durations in the total distance (TD), high-speed running distance (HSRD), and sprinting distance (SPD). A mixed analysis of variance was performed to compare different WCS durations between playing positions and contextual variables, making pairwise comparisons by Bonferroni post hoc test. Positional differences were found for TD (p < 0.01, ωp2 = 0.02), HSRD (p < 0.01, ωp2 = 0.01) and SPD (p < 0.01, ωp2 = 0.02). There was a significant interaction when comparing WCS by match half in TD (F = 6.1, p < 0.01, ωp2 = 0.07) but no significant differences in HSRD (p = 0.403, ωp2 = 0) or SPD (p = 0.376, ωp2 = 0). A significant interaction was identified when comparing WCS by match location in TD (F = 51.5, p < 0.01, ωp2 = 0.14), HSRD (F = 19.15, p < 0.01, ωp2 = 0.05) and SPD (F = 8.95, p < 0.01, ωp2 = 0.01) as well as WCS by match outcome in TD (F = 36.4, p < 0.01, ωp2 = 0.08), HSRD (F = 13.6, p < 0.01, ωp2 = 0.04) and SPD (F = 7.4, p < 0.01, ωp2 = 0.02). Positional differences exist in TD, HSRD, and SPD in match-play WCS, and contextual variables such as match half, match location and match outcome have a significant impact on the WCS of professional soccer players.  相似文献   

14.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

15.
16.
Familial clustering and ethnic differences suggest that visceral leishmaniasis caused by Leishmania donovani is under genetic control. A recent genome scan provided evidence for a major susceptibility gene on Chromosome 22q12 in the Aringa ethnic group in Sudan. We now report a genome-wide scan using 69 families with 173 affected relatives from two villages occupied by the related Masalit ethnic group. A primary ten-centimorgan scan followed by refined mapping provided evidence for major loci at 1p22 (LOD score 5.65; nominal p = 1.72 × 10−7; empirical p < 1 × 10−5; λS = 5.1) and 6q27 (LOD score 3.74; nominal p = 1.68 × 10−5; empirical p < 1 × 10−4; λS = 2.3) that were Y chromosome–lineage and village-specific. Neither village supported a visceral leishmaniasis susceptibility gene on 22q12. The results suggest strong lineage-specific genes due to founder effect and consanguinity in these recently immigrant populations. These chance events in ethnically uniform African populations provide a powerful resource in the search for genes and mechanisms that regulate this complex disease.  相似文献   

17.
The study aimed to compare the physical demands required during the first, second, and third most demanding passages (MDP) of play considering the effect of playing position, type of passage, and passage duration. A longitudinal study for three mesocycles was conducted in a professional soccer team competing in LaLiga123. Tracking systems collected total distance covered (DIS), high-speed running distance (HSRD), sprinting distance (SPD), total of high-intensity accelerations (ACCHIGH), and total of high-intensity decelerations (DECHIGH). The results confirmed that a significant effect of the type of passage (first, second or third MDP of play) on DIS (F(1.24, 178.89) = 115.53; p = 0.01; ηp2 = 0.45), HSRD (F(1.35, 195.36) = 422.82; p = 0.01; ηp2 = 0.75), SPD (F(1.43, 206.59) = 299.99; p = 0.01; ηp2 = 0.68), ACCHIGH (F(1.45, 209.38) = 268.59; p = 0.01; ηp2 = 0.65), and DECHIGH (F(1.45, 209.38) = 324.88; p = 0.01; ηp2 = 0.69) was found. In addition, a significant interaction between playing position, type and duration of the passage was observed in DIS (F(12.60, 453.47) = 1.98; p = 0.02; ηp2 = 0.05) and ACCHIGH (F(13.99, 503.78) = 1.92; p = 0.03; ηp2 = 0.06). In conclusion, significant differences in physical demands between the first, second, and third MDP of play were observed. However, there were some cases (DIS and ACCHIGH) in which no significant differences were found between these passages. Therefore, coaches should consider not only the magnitude of these peak intensity periods (e.g., distance covered per minute) but also the number of passages that players may experience during match play.  相似文献   

18.
Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin (RELN) gene (p = 2.9 × 10−5 in women), with a significant gene-sex effect (p = 1.8 × 10−4). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 × 10−3 in women; p = 4.2 × 10−3 for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 × 10−7; p = 1.6 × 10−5 for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.  相似文献   

19.
The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828 = 53 and nrs505922 = 59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p = 1.32 x 10−199), and thrombosis ORrs505922 1.33, p = 2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10−191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10−12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10-23, lupus OR 0.84, p = 3.97 x 10−06. PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10−13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.  相似文献   

20.
Dyslipidemia is a strong risk factor for cardiovascular disease among patients with type 2 diabetes (T2D). The aim of this study was to identify lipid-related genetic variants in T2D patients of Han Chinese ancestry. Among 4,908 Chinese T2D patients who were not taking lipid-lowering medications, single nucleotide polymorphisms (SNPs) in seven genes previously found to be associated with lipid traits in genome-wide association studies conducted in populations of European ancestry (ABCA1, GCKR, BAZ1B, TOMM40, DOCK7, HNF1A, and HNF4A) were genotyped. After adjusting for multiple covariates, SNPs in ABCA1, GCKR, BAZ1B, TOMM40, and HNF1A were identified as significantly associated with triglyceride levels in T2D patients (P < 0.05). The associations between the SNPs in ABCA1 (rs3890182), GCKR (rs780094), and BAZ1B (rs2240466) remained significant even after correction for multiple testing (P = 8.85×10−3, 7.88×10−7, and 2.03×10−6, respectively). BAZ1B (rs2240466) also was associated with the total cholesterol level (P = 4.75×10−2). In addition, SNP rs157580 in TOMM40 was associated with the low-density lipoprotein cholesterol level (P = 6.94×10−3). Our findings confirm that lipid-related genetic loci are associated with lipid profiles in Chinese patients with type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号