首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
While enormous efforts have gone into identifying signaling pathways and molecules involved in normal and malignant cell behaviors1-2, much of this work has been done using classical two-dimensional cell culture models, which allow for easy cell manipulation. It has become clear that intracellular signaling pathways are affected by extracellular forces, including dimensionality and cell surface tension3-4. Multiple approaches have been taken to develop three-dimensional models that more accurately represent biologic tissue architecture3. While these models incorporate multi-dimensionality and architectural stresses, study of the consequent effects on cells is less facile than in two-dimensional tissue culture due to the limitations of the models and the difficulty in extracting cells for subsequent analysis.The important role of the microenvironment around tumors in tumorigenesis and tumor behavior is becoming increasingly recognized4. Tumor stroma is composed of multiple cell types and extracellular molecules. During tumor development there are bidirectional signals between tumor cells and stromal cells5. Although some factors participating in tumor-stroma co-evolution have been identified, there is still a need to develop simple techniques to systematically identify and study the full array of these signals6. Fibroblasts are the most abundant cell type in normal or tumor-associated stromal tissues, and contribute to deposition and maintenance of basement membrane and paracrine growth factors7.Many groups have used three dimensional culture systems to study the role of fibroblasts on various cellular functions, including tumor response to therapies, recruitment of immune cells, signaling molecules, proliferation, apoptosis, angiogenesis, and invasion8-15. We have optimized a simple method for assessing the effects of mammary fibroblasts on mammary epithelial cells using a commercially available extracellular matrix model to create three-dimensional cultures of mixed cell populations (co-cultures)16-22. With continued co-culture the cells form spheroids with the fibroblasts clustering in the interior and the epithelial cells largely on the exterior of the spheroids and forming multi-cellular projections into the matrix. Manipulation of the fibroblasts that leads to altered epithelial cell invasiveness can be readily quantified by changes in numbers and length of epithelial projections23. Furthermore, we have devised a method for isolating epithelial cells out of three-dimensional co-culture that facilitates analysis of the effects of fibroblast exposure on epithelial behavior. We have found that the effects of co-culture persist for weeks after epithelial cell isolation, permitting ample time to perform multiple assays. This method is adaptable to cells of varying malignant potential and requires no specialized equipment. This technique allows for rapid evaluation of in vitro cell models under multiple conditions, and the corresponding results can be compared to in vivo animal tissue models as well as human tissue samples.  相似文献   

2.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.  相似文献   

3.
Fibroblast activation protein alpha (FAPα) is a 95-kDa serine protease of post-prolyl peptidase family on cell surface. FAPoL is widely expressed in tumor microenviron- ment. The wide spread association of FAPα expression with cancer suggests that it has important functions in the disease. However, the nature of FAPα's roles in cancer cell activity is not well-determined. It has been showed that FAPα silencing in SKOV3 cells induces ovarian tumors but significantly reduces tumor growth in a xenograft mouse model. To further determine the role of FAPoL in epithelial ovarian cancer cells, SKOV3-FAPα and HO8910-FAPα cell lines, which over-expressed FAPα stably, were con- structed and then their biological behaviors were investi- gated. It was found that FAPoL promoted ovarian cancer cell proliferation, drug resistance, invasiveness, and migra- tion in vitro. Immunochemistry assay showed that FAPα significantly facilitated tumor growth in xenograft tumor tissues. These results suggested that FAPα might directly promote tumor growth and invasiveness in ovarian cancer cells.  相似文献   

4.
Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted “X”). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.  相似文献   

5.
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.  相似文献   

6.
A three-dimensional culture method is described in which primary pituitary adenoma cells are grown in alginate beads. Alginate is a polymer derived from brown sea algae. Briefly, the tumor tissue is cut into small pieces and submitted to an enzymatic digestion with collagenase and trypsin. Next, a cell suspension is obtained. The tumor cell suspension is mixed with 1.2% sodium alginate and dropped into a CaCl2 solution, and the alginate/cell suspension is gelled on contact with the CaCl2 to form spherical beads. The cells embedded in the alginate beads are supplied with nutrients provided by the culture media enriched with 20% FBS. Three-dimensional culture in alginate beads maintains the viability of adenoma cells for long periods of time, up to four months. Moreover, the cells can be liberated from the alginate by washing the beads with sodium citrate and seeded on glass coverslips for further immunocytochemical analyses. The use of a cell culture model allows for the fixation and visualization of the actin cytoskeleton with minimal disorganization. In summary, alginate beads provide a reliable culture system for the maintenance of pituitary adenoma cells.  相似文献   

7.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   

8.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.  相似文献   

9.
The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment 1. Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions 1-2. However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion3. Matrix density 4, stiffness 5-6, and structure 6-7, interstitial fluid pressure 8, and interstitial fluid flow 8 are all altered during cancer progression.Interstitial fluid flow in particular is higher in tumors compared to normal tissues 8-10. The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 μm s-1, depending on tumor size and differentiation 9, 11. This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability 12. Interstitial fluid flow has been shown to increase invasion of cancer cells 13-14, vascular fibroblasts and smooth muscle cells 15. This invasion may be due to autologous chemotactic gradients created around cells in 3-D 16 or increased matrix metalloproteinase (MMP) expression 15, chemokine secretion and cell adhesion molecule expression 17. However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts 18, (b) transporting of antigens and other soluble factors to lymph nodes 19, and (c) modulating lymphatic endothelial cell morphogenesis 20.The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion 13-15, 17. By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.  相似文献   

10.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.  相似文献   

11.
Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists.  相似文献   

12.
Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists.  相似文献   

13.
Bladder cancer is the second most common cancer of the urogenital tract and novel therapeutic approaches that can reduce recurrence and progression are needed. The tumor microenvironment can significantly influence tumor development and therapy response. It is therefore often desirable to grow tumor cells in the organ from which they originated. This protocol describes an orthotopic model of bladder cancer, in which MB49 murine bladder carcinoma cells are instilled into the bladder via catheterization. Successful tumor cell implantation in this model requires disruption of the protective glycosaminoglycan layer, which can be accomplished by physical or chemical means. In our protocol the bladder is treated with trypsin prior to cell instillation. Catheterization of the bladder can also be used to deliver therapeutics once the tumors are established. This protocol describes the delivery of an adenoviral construct that expresses a luciferase reporter gene. While our protocol has been optimized for short-term studies and focuses on gene delivery, the methodology of mouse bladder catheterization has broad applications.  相似文献   

14.
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.  相似文献   

15.
Bladder cancer is one of the most common malignancies of the urogenital tract. Intravesical injection of Bacillus Calmette-Guérin (BCG) is the gold standard treatment for the high-grade non-muscle invasive bladder cancer (NMIBC). However, since the treatment-related side effects are relevant, newer biological response modifiers with a better benefit/side effects ratio are needed.The tumour microenvironment can influence both tumour development and therapy efficacy. In order to obtain a good model, it is desirable to implant tumour cells in the organ from which the cancer originates.In this protocol, we describe a method for establishing a tumour in the bladder cavity of female mice and subsequent delivery of therapeutic agents; the latter are exemplified by our use of Helicobacter pylori neutrophil activating protein (HP-NAP). A preliminary chemical burn of the mucosa, followed by the injection of mouse urothelial carcinoma cell line MB49 via urethral catheterization, enables the cells to attach to the bladder mucosa. After a period, required to allow an initial proliferation of the cells, mice are treated with HP-NAP, administrated again via catheterization. The anti-tumour activity of HP-NAP is evaluated comparing the tumour volume, the extent of necrosis and the degree of vascularization between vehicle- and HP-NAP-treated animals.  相似文献   

16.
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network.By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.  相似文献   

17.
Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies. Ovarian cancer is a heterogeneous and highly recurrent disease. Recent studies suggest TICs may play an important role in disease biology. We have identified culture conditions that enrich for TICs from ovarian cancer cell lines. Growing either adherent cells or non-adherent ‘floater’ cells in a low attachment plate with serum free media in the presence of growth factors supports the propagation of ovarian cancer TICs with stem cell markers (CD133 and ALDH activity) and increased tumorigenicity without the need to physically separate the TICs from other cell types within the culture. Although the presence of floater cells is not common for all cell lines, this population of cells with innate low adherence may have high tumorigenic potential.Compared to adherent cells grown in the presence of serum, TICs readily form spheres, are significantly more tumorigenic in mice, and express putative stem cell markers. The conditions are easy to establish in a timely manner and can be used to study signaling pathways important for maintaining stem characteristics, and to identify drugs or combinations of drugs targeting TICs. The culture conditions described herein are applicable for a variety of ovarian cancer cells of epithelial origin and will be critical in providing new information about the role of TICs in tumor initiation, progression, and relapse.  相似文献   

18.
19.
Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.  相似文献   

20.
The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and “pearls of wisdom”/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号