首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome P450   总被引:1,自引:0,他引:1  
Since 1993, three new cytochrome P450 X-ray structures have been determined, giving a total of four known structures. Two of the new structures are in the substrate-free form and one is substrate-bound. These new structures, together with a wealth of mutagenesis studies on various P450s, have provided considerable information on what structural features control substrate specificity in P450s. In addition, some important insights into the catalytic mechanism have been made.  相似文献   

2.
3.
植物细胞色素P450   总被引:11,自引:0,他引:11  
对植物细胞色素P450(CYP450)基因的分离,植物CYP450在苯丙烷类物质、芥子油苷及IAA和萜类等物质的生物合成中的功能,以及对天然生物合成与人工合成物质的解毒功能等研究进展作了简要的综述。指出分离植物细胞色素P450基因,并对其生物学功能进行分析以及植物细胞色素P450降解除草剂的机制及其在环境生物修复等方面的应用是今后一段时间内植物CYP450领域的研究热点。  相似文献   

4.
Cytochrome P450 (CYP) is a large family of enzymes containing heme as the active site. Since their discovery and the elucidation of their structure, they have attracted the interest of scientist for many years, particularly due to their catalytic abilities. Since the late 1970s attempts have concentrated on the construction and development of electrochemical sensors. Although sensors based on mediated electron transfer have also been constructed, the direct electron transfer approach has attracted most of the interest. This has enabled the investigation of the electrochemical properties of the various isoforms of CYP. Furthermore, CYP utilized to construct biosensors for the determination of substrates important in environmental monitoring, pharmaceutical industry and clinical practice.  相似文献   

5.
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxification pathways. The classic forms of these enzymes are heme-dependent mixed function oxidases that utilize NADPH or NADH and molecular oxygen to produce functionalized organic products. The nonclassical forms are monooxygenases that either do not utilize flavoproteins for dioxygen activation or fail to incorporate molecular oxygen into their final product. Biosynthetic P450s play paramount roles in the synthesis of lignin intermediates, sterols, terpenes, flavonoids, isoflavonoids, furanocoumarins, and a variety of other secondary plant products. Other catabolic P450s metabolize toxic herbicides and insecticides into nontoxic products or, conversely, activate nontoxic substances into toxic products. Biochemical and molecular characterizations on a number of plant P450s have indicated that the relationships between these heme proteins and their substrates are at least as complex as those that exist in mammalian systems. Examples now exist of plant P450s that metabolize: a narrow range of substrates to yield different products, a single substrate to yield different products, multiple substrates to yield the same product, or a single substrate sequentially to yield discrete intermediates in the biosynthesis of a single product. Extensive divergence of catalytic site as well as noncatalytic site residues accounts for the high degree of primary structure variation in the P450 gene superfamily and the diverse array of substrates synthesized and/or detoxified by these proteins. Classic P450s still retain a highly conserved F-G-R-C-G motif in their catalytic site and conserved amino acids in their oxygen binding pocket; nonclassical P450s diverge at several of these positions. A broad range of cloning and transient expression strategies are suitable for plant P450 studies and these have allowed for the isolation and characterization of a number of P450 cDNAs and genes. Because many of these sequences have been cloned only recently, much remains to be learned about the substrate specificities of P450 reactions in plants and the mechanisms by which their genes are regulated.  相似文献   

6.
Cytochrome P450: progress and predictions.   总被引:7,自引:0,他引:7  
The cytochrome P450 gene superfamily encodes many isoforms that are unusual in the variety of chemical reactions catalyzed and the number of substrates attacked. The latter include physiologically important substances such as steroids, eicosanoids, fatty acids, lipid hydroperoxides, retinoids, and other lipid metabolites, and xenobiotics such as drugs, alcohols, procarcinogens, antioxidants, organic solvents, anesthetics, dyes, pesticides, odorants, and flavorants. Accordingly, it is not surprising that these catalysts have come under intensive study in recent years in fields as diverse as biochemistry and molecular biology, endocrinology, pharmacology, toxicology, anesthesiology, nutrition, pathology, and oncology. In this review, recent advances in our knowledge of the catalytic properties, reaction mechanisms, and regulation of expression and activity of the P450 enzymes are briefly summarized. In addition, the prospects for research in this field are considered, and advances are predicted in four broad areas: improved basic knowledge of enzyme catalysis and regulation; synthesis of fine chemicals, including drug design and screening; removal of undesirable environmental chemicals; and biomedical applications related to steroid, drug, carcinogen, and alcohol metabolism.  相似文献   

7.
Cytochrome P450: advances and prospects.   总被引:1,自引:0,他引:1  
  相似文献   

8.
细胞色素P450与肿瘤   总被引:4,自引:0,他引:4  
Lu H  Li Y 《生理科学进展》1997,28(2):178-180
本文综棕了细胞色素P450同工酶与致癌物代谢、与抗癌药的相互作用以及化的关系,并对调控P450同工酶以防治肿瘤的策略进行了论述。由于P450同工酶具有多态性、工物特异性及可诱导性的特点,在调控P450同工酶以防治肿瘤的问题上,针对不同人群、不同疾病状况及不同用药方案可能需采取抑制或诱导的不同策略。  相似文献   

9.
细胞色素P450介导的昆虫抗药性   总被引:6,自引:0,他引:6  
本文介绍了昆虫细胞色素P450(简称P450)及其介导抗性的分子基础的研究进展。细胞色素:P450在转录水平上的过量表达是P450介导抗性的主要机制,P450的氨基酸残基改变也可能改变昆虫的抗药性。  相似文献   

10.
The cytochrome P450 mono-oxygenase system represents a major defence against chemical challenge from the environment, constituting part of an adaptive response mounted by an organism following exposure to harmful agents. Cytochrome P450s are also able to catalyse the activation of compounds to toxic products, and participate in a variety of essential 'housekeeping' functions, such as biosynthesis of steroid hormones and fatty acid oxidation. It is clear that the modulation of expression of these enzymes can have a significant effect on chemical toxicity, carcinogenicity and mutagenicity. The concept of cancer chemoprevention, i.e. the administration of a (non-toxic) chemical or dietary component in order to prevent neoplastic disease or to inhibit its progression, is an attractive one. Despite this, relatively little work has been done to characterize the ability of putative chemopreventive agents to modulate P450 expression, or to understand the interaction between P450s and chemopreventive agents. Before chemopreventive treatment can become a reality, it is essential that this complex issue is addressed; for instance, it is likely that any single chemopreventive agent will induce more than one P450 isoenzyme, and while altered expression of a particular P450 may attenuate the effects of one toxic agent, the effects of others might well be potentiated. Our laboratory has created a transgenic mouse line in which the rat CYP1A1 promoter drives expression of the beta-galactosidase gene. These mice can be used to define which compounds act via the Ah receptor, in which tissues, and at which stage of development. We are currently developing another mouse line in which beta1-galactosidase expression is controlled by the mouse GstA1 promoter, allowing us to define the role of the antioxidant responsive element in the action of chemopreventive agents. Finally, using cre-loxP transgenic technology, we have generated a mouse line in which P450 reductase can be deleted in a conditional, i.e. tissue-specific, manner, permitting us to investigate the role of P450s in chemoprevention in a more defined manner.  相似文献   

11.
Summary Cytochrome P450 in the mitochondria of the adrenal cortex functions in the monooxygenation reactions for the biosynthesis of various steroid hormones, such as cholesterol side chain cleavage, hydroxylation at 11-position and that at 18-position of the steroid structure. The cytochrome is firmly associated with the mitochondrial membrane and therefore can be isolated only by the aid of ionic or non-ionic detergent. Recently, two cytochromes P450 each catalyzing a specified reaction have been purified to a homogeneous state, that is, P450scc having cholesterol side chain cleavage activity and P45011 having 11-hydroxylation activity. The properties of these purified P450's as well as the other components of the monooxygenase system, adrenodoxin and adrenodoxin reductase, are, therefore, summarized and compared to those of P450 in the mitochondria) preparation in situ.Among many findings, both purified cytochromes P450 were revealed to be a low-spin type hemoprotein and their spin states were changed to a high-spin state by being complexed with the corresponding substrate. The binding of a substrate also facilitated the reduction of the cytochrome and appeared to increase the stability of the oxygenated form of cytochrome P450. These effects are important from the point of view that the primary role of the heme of cytochrome P450 is the activation of molecular oxygen. In addition, the results of our detailed kinetic studies on the transfer of electrons from adrenodoxin to cytochrome P450 in the reconstituted system have also been described Finally, the topology of adrenodoxin and the reductase were shown to be on the inner mitochondrial membrane by a peroxidase-labeled antibody method.  相似文献   

12.
The pattern suggested for the structure-function superfamily of cytochromes P450 is composed by combining the conserved amino acid motifs. The sizes of P450 cytochromes were estimated according to their length. The empirical coefficients reflecting the peculiarities of the primary structure of these enzymes are calculated. We propose an approach for determining novel proteins sequences to the mentioned superfamily on the ground of the complex of these parameters. A number of the hypothetical proteins from the international databases is related to the cytochromes P450 by means of our pattern.  相似文献   

13.
细胞色素P450与除草剂代谢   总被引:1,自引:0,他引:1  
细胞色素P450是广泛存在于生物中的一类具有混合功能的血红素氧化酶。P450对除草剂代谢的机制及反应类型是多样的,与除草剂代谢相关的P450基因的植物转基因研究得到了具有不同除草剂抗性的转基因植物。文章就这方面的研究进展作介绍。  相似文献   

14.
Protein engineering of cytochrome P450 monooxygenases (P450s) has been very successful in generating valuable non-natural activities and properties, allowing these powerful catalysts to be used for the synthesis of drug metabolites and in biosynthetic pathways for the production of precursors of artemisinin and paclitaxel. Collected experience indicates that the P450s are highly 'evolvable' - they are particularly robust to mutation in their active sites and readily accept new substrates and exhibit new selectivities. Their ability to adapt to new challenges upon mutation may reflect the nonpolar nature of their active sites as well as their high degree of conformational variability.  相似文献   

15.
16.
While attention has historically focused on mitochondria as the primary source of ROS in myocardial ischemia/reperfusion injury, recent evidence has implicated cytochrome P450 monooxygenases (CYPs) as a significant factor. CYPs represent a large family of enzymes that catalyze the oxidation of endogenous and exogenous compounds. They catalyze arachidonic acid oxidation to a variety of biologically active eicosanoids that regulate ion channels and protein kinases, with effects on vasomotor tone and cardiac inotropy. They also represent a significant source of reactive oxygen species that may target cellular homeostatic mechanisms and mitochondria. In this review, we will consider the contribution of cytochrome P450 enzymes to reperfusion injury and will speculate on whether the mechanism of injury is due to CYP-mediated ROS production or arachidonic acid metabolites.  相似文献   

17.
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.  相似文献   

18.
19.
The primary structure of the cDNA clone SF28 was determined in sunflower (Helianthus annuusL.) flowers. The clone comprises a 874-bp insert corresponding to 227 amino acid residues of the C-terminal part of the cytochrome P450 gene. The sunflower cytochrome P450 was considerably different from the already known plant and animal cytochromes P450.  相似文献   

20.
细胞色素P450与癌症基因治疗   总被引:4,自引:0,他引:4  
细胞色素P45 0基因与癌症化疗潜药(该类潜药可通过P45 0催化的加单氧酶反应而活化 )结合的癌症基因疗法引人注意[1]一些抗癌药物可被P45 0酶系代谢 (表1 )。环磷酰胺 (CPA )、异环磷酰胺 (ifos famide)、甲基苄肼、甲苄肼 ( procarbazine)和氮烯咪胺 (dacarbazine) ,经特定P45 0酶系的代谢所产生的中间物具有抗癌活性。硫代TEPA、阿霉素、依托泊甙 (etoposide)和三苯氧胺 (tamoxifen)本身具有抗癌活性 ,但通过P45 0代谢形成的具有细胞毒性的代谢物 ,抗癌活性可得到加强。还…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号