首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Illumina BovineSNP50 BeadChip features 54,001 informative single nucleotide polymorphisms (SNPs) that uniformly span the entire bovine genome. Among them, 52,255 SNPs have locations assigned in the current genome assembly (Btau_4.0), including 19,294 (37%) intragenic SNPs (i.e., located within genes) and 32,961 (63%) intergenic SNPs (i.e., located between genes). While the SNPs represented on the Illumina Bovine50K BeadChip are evenly distributed along each bovine chromosome, there are over 14,000 genes that have no SNPs placed on the current BeadChip. Kernel density estimation, a non-parametric method, was used in the present study to identify SNP-poor and SNP-rich regions on each bovine chromosome. With bandwidth = 0.05 Mb, we observed that most regions have SNP densities within 2 standard deviations of the chromosome SNP density mean. The SNP density on chromosome X was the most dynamic, with more than 30 SNP-rich regions and at least 20 regions with no SNPs. Genotyping ten water buffalo using the Illumina BovineSNP50 BeadChip revealed that 41,870 of the 54,001 SNPs are fully scored on all ten water buffalo, but 6,771 SNPs are partially scored on one to nine animals. Both fully scored and partially/no scored SNPs are clearly clustered with various sizes on each chromosome. However, among 43,687 bovine SNPs that were successfully genotyped on nine and ten water buffalo, only 1,159 were polymorphic in the species. These results indicate that the SNPs sites, but not the polymorphisms, are conserved between two species. Overall, our present study provides a solid foundation to further characterize the SNP evolutionary process, thus improving understanding of within- and between-species biodiversity, phylogenetics and adaption to environmental changes.  相似文献   

2.
The Illumina BovineSNP50 BeadChip features 54,001 informative single nucleotide polymorphisms (SNPs) that uniformly span the entire bovine genome. Among them, 52,255 SNPs have locations assigned in the current genome assembly (Btau_4.0), including 19,294 (37%) intragenic SNPs (i.e., located within genes) and 32,961 (63%) intergenic SNPs (i.e., located between genes). While the SNPs represented on the Illumina Bovine50K BeadChip are evenly distributed along each bovine chromosome, there are over 14,000 genes that have no SNPs placed on the current BeadChip. Kernel density estimation, a non-parametric method, was used in the present study to identify SNP-poor and SNP-rich regions on each bovine chromosome. With bandwidth = 0.05 Mb, we observed that most regions have SNP densities within 2 standard deviations of the chromosome SNP density mean. The SNP density on chromosome X was the most dynamic, with more than 30 SNP-rich regions and at least 20 regions with no SNPs. Genotyping ten water buffalo using the Illumina BovineSNP50 BeadChip revealed that 41,870 of the 54,001 SNPs are fully scored on all ten water buffalo, but 6,771 SNPs are partially scored on one to nine animals. Both fully scored and partially/no scored SNPs are clearly clustered with various sizes on each chromosome. However, among 43,687 bovine SNPs that were successfully genotyped on nine and ten water buffalo, only 1,159 were polymorphic in the species. These results indicate that the SNPs sites, but not the polymorphisms, are conserved between two species. Overall, our present study provides a solid foundation to further characterize the SNP evolutionary process, thus improving understanding of within- and between-species biodiversity, phylogenetics and adaption to environmental changes.  相似文献   

3.
This is the first report performing the whole genome SNP scanning of snow sheep (Ovis nivicola). Samples of snow sheep (n = 18) collected in six different regions of the Republic of Sakha (Yakutia) from 64° to 71° N. For SNP genotyping, we applied Ovine 50K SNP BeadChip (Illumina, United States), designed for domestic sheep. The total number of genotyped SNPs (call rate 90%) was 47796 (88.1% of total SNPs), wherein 1006 SNPs were polymorphic (2.1%). Principal component analysis (PCA) showed the clear differentiation within the species O. nivicola: studied individuals were distributed among five distinct arrays corresponding to the geographical locations of sampling points. Our results demonstrate that the DNA chip designed for domestic sheep can be successfully used to study the allele pool and the genetic structure of snow sheep populations.  相似文献   

4.
Summary In PHA-cultured lymphocytes, about 8% of metaphases from 32 women were aneuploid compared to 4% of metaphases from 35 men. A significant part of this aneuploidy was characterized by sex chromosome involvement: in women, the loss or gain of X chromosomes; in men, the gain of X chromosomes and the loss or gain of Y chromosomes. The incidence of this aneuploidy was positively age-related for both sexes. Premature division of the X-chromosome centromere was closely associated with X-chromosome aneuploidy in women and men, and appeared to be the mechanism of nondisjunction causing this aneuploidy. Premature centromere division (PCD) indicated a dysfunction of the X-chromosome centromere with aging, and this dysfunction was the basic cause of age-related aneuploidy. A similar mechanism of nondisjunction may operate for the Y chromosome of men, but could not be clearly demonstrated because of the low incidence of Y-chromosome aneuploidy.The balance of the aneuploidy was characterized by chromosome loss and the involvement of all chromosome groups. It was consistent with chromosome loss from metaphase cells damaged during preparation for cytogenetic examination.  相似文献   

5.
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype–phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole‐genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom® myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high‐density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high‐resolution genomewide information.  相似文献   

6.

Background

Body weight (BW) is an important trait for meat production in sheep. Although over the past few years, numerous quantitative trait loci (QTL) have been detected for production traits in cattle, few QTL studies have been reported for sheep, with even fewer on meat production traits. Our objective was to perform a genome-wide association study (GWAS) with the medium-density Illumina Ovine SNP50 BeadChip to identify genomic regions and corresponding haplotypes associated with BW in Australian Merino sheep.

Methods

A total of 1781 Australian Merino sheep were genotyped using the medium-density Illumina Ovine SNP50 BeadChip. Among the 53 862 single nucleotide polymorphisms (SNPs) on this array, 48 640 were used to perform a GWAS using a linear mixed model approach. Genotypes were phased with hsphase; to estimate SNP haplotype effects, linkage disequilibrium blocks were identified in the detected QTL region.

Results

Thirty-nine SNPs were associated with BW at a Bonferroni-corrected genome-wide significance threshold of 1 %. One region on sheep (Ovis aries) chromosome 6 (OAR6) between 36.15 and 38.56 Mb, included 13 significant SNPs that were associated with BW; the most significant SNP was OAR6_41936490.1 (P = 2.37 × 10−16) at 37.69 Mb with an allele substitution effect of 2.12 kg, which corresponds to 0.248 phenotypic standard deviations for BW. The region that surrounds this association signal on OAR6 contains three genes: leucine aminopeptidase 3 (LAP3), which is involved in the processing of the oxytocin precursor; NCAPG non-SMC condensin I complex, subunit G (NCAPG), which is associated with foetal growth and carcass size in cattle; and ligand dependent nuclear receptor corepressor-like (LCORL), which is associated with height in humans and cattle.

Conclusions

The GWAS analysis detected 39 SNPs associated with BW in sheep and a major QTL region was identified on OAR6. In several other mammalian species, regions that are syntenic with this region have been found to be associated with body size traits, which may reflect that the underlying biological mechanisms share a common ancestry. These findings should facilitate the discovery of causative variants for BW and contribute to marker-assisted selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0142-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were "T T" genotypes; the 3 carriers were "C T"; 24 phenotypically normal related sheep were either "C T" or "C C"; and 46 unrelated normal control sheep from other breeds were all "C C". The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective "T" allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis.  相似文献   

8.
Genetic relatedness of 24 animals belonging to seven Indian cattle breeds was studied using high throughput genotyping‐by‐sequencing (GBS) markers. GBS produced 93.6 million reads with an average of about 3.9 million reads per animal. A total of 107 488 SNPs were identified in these individuals. When only one SNP per read was considered, a total of 60 261 SNPs representing independent reads were identified with an average SNP‐to‐SNP distance of 45 kb across the bovine reference genome. About 24% of the GBS‐SNP markers were more than 100 kb apart. Of these, 58 322 SNPs mapped to autosomes, 1645 to the X chromosome and 28 to the Y chromosome. The average SNP‐to‐SNP distance on the X chromosome was 91.3 kb, whereas on the Y chromosome it was 1546.4 kb. The minor allele frequency within the Indian cattle varied from 0.103 (Ongole) to 0.177 (Siri), whereas Holstein cattle had the lowest value of 0.089. This is the first application of GBS in cattle of South Asia. The baseline information generated in this study might prompt implementation of GBS in breeding of cattle belonging to this region.  相似文献   

9.
It has been known for some time that there is an association between chronological aging and X-chromosome aneuploidy in peripheral blood lymphocyte cultures from females. In an attempt to elucidate the mechanism of X-chromosome aneuploidy in aging females, we used a BrdU late-labeling technique to determine the X-inactivation pattern in 45,X and 47,XXX lymphocytes of older women. In 50 of 58 X-aneuploid cells the inactive X chromosome was missing or extra. This implies that either the inactive X has a special propensity for mitotic errors or mitotic errors occur at random but subsequent selection is less stringent against cells with a missing or additional inactive X chromosome than against aneuploid cells involving the active X chromosome. Evidence is presented in favor of the former hypothesis.  相似文献   

10.
For future food security, it is important that wheat, one of the most widely consumed crops in the world, can survive the threat of abiotic and biotic stresses. New genetic variation is currently being introduced into wheat through introgressions from its wild relatives. For trait discovery, it is necessary that each introgression is homozygous and hence stable. Breeding programmes rely on efficient genotyping platforms for marker‐assisted selection (MAS). Recently, single nucleotide polymorphism (SNP)‐based markers have been made available on high‐throughput Axiom® SNP genotyping arrays. However, these arrays are inflexible in their design and sample numbers, making their use unsuitable for long‐term MAS. SNPs can potentially be converted into Kompetitive allele‐specific PCR (KASP?) assays that are comparatively cost‐effective and efficient for low‐density genotyping of introgression lines. However, due to the polyploid nature of wheat, KASP assays for homoeologous SNPs can have difficulty in distinguishing between heterozygous and homozygous hybrid lines in a backcross population. To identify co‐dominant SNPs, that can differentiate between heterozygotes and homozygotes, we PCR‐amplified and sequenced genomic DNA from potential single‐copy regions of the wheat genome and compared them to orthologous copies from different wild relatives. A panel of 620 chromosome‐specific KASP assays have been developed that allow rapid detection of wild relative segments and provide information on their homozygosity and site of introgression in the wheat genome. A set of 90 chromosome‐nonspecific assays was also produced that can be used for genotyping introgression lines. These multipurpose KASP assays represent a powerful tool for wheat breeders worldwide.  相似文献   

11.
Genotype imputation is potentially a zero-cost method for bridging gaps in coverage and power between genotyping platforms. Here, we quantify these gains in power and coverage by using 1,376 population controls that are from the 1958 British Birth Cohort and were genotyped by the Wellcome Trust Case-Control Consortium with the Illumina HumanHap 550 and Affymetrix SNP Array 5.0 platforms. Approximately 50% of genotypes at single-nucleotide polymorphisms (SNPs) exclusively on the HumanHap 550 can be accurately imputed from direct genotypes on the SNP Array 5.0 or Illumina HumanHap 300. This roughly halves differences in coverage and power between the platforms. When the relative cost of currently available genome-wide SNP platforms is accounted for, and finances are limited but sample size is not, the highest-powered strategy in European populations is to genotype a larger number of individuals with the HumanHap 300 platform and carry out imputation. Platforms consisting of around 1 million SNPs offer poor cost efficiency for SNP association in European populations.  相似文献   

12.
To accelerate genomics research and molecular breeding applications in chickpea, a high‐throughput SNP genotyping platform ‘Axiom®CicerSNP Array’ has been designed, developed and validated. Screening of whole‐genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high‐quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p‐convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom®CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High‐density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main‐effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications.  相似文献   

13.
Birth weight is the earliest available growth trait with considerable impacts on lamb survivability and growth performance traits. This study was conducted to perform a genome-wide association study of birth weight in a meat-type sheep. A total of 132 Lori-Bakhtiari sheep were selected based on estimated of breeding values (EBVs) for BW analyses. The selected animals were genotyped using Illumina Ovine SNP50 Bead Chip. After quality control, a total of 41 323 single-nucleotide polymorphisms (SNPs) and 130 sheep were used for subsequent analyses. Plink 1.90 beta software was used for the analyses. Seven SNPs on chromosomes 1, 16, 19 and 22 were detected based on genome-wide unadjusted P-values (P <10−6), which jointly accounted for 1.2% of total genetic variation. However, based on Bonferroni-adjusted P-values, only three SNPs on chromosome 1 had significant associations with EBVs for birth weight (P <0.05), which jointly explained 0.8% of total genetic variation. A total of seven genes were found in 50 kb intervals from the three significant SNPs on chromosome 1, but only three genes, including RAB6B (a member of RAS oncogene family), Tf serotransferrin and GIGYF2 (a GRB10 interacting GYF protein 2), could be considered as candidate genes for birth weight in future studies. The results of this study may facilitate potential use of the genes involving in growth and production traits for genetic improvement of productivity in sheep.  相似文献   

14.

Key message

New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage.

Abstract

SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding.
  相似文献   

15.
We describe the application of complexity reduction of polymorphic sequences (CRoPS®) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.  相似文献   

16.
17.
Genotype data from the Illumina Linkage III SNP panel (n = 4,720 SNPs) and the Affymetrix 10 k mapping array (n = 11,120 SNPs) were used to test the effects of linkage disequilibrium (LD) between SNPs in a linkage analysis in the Collaborative Study on the Genetics of Alcoholism pedigree collection (143 pedigrees; 1,614 individuals). The average r2 between adjacent markers across the genetic map was 0.099 +/- 0.003 in the Illumina III panel and 0.17 +/- 0.003 in the Affymetrix 10 k array. In order to determine the effect of LD between marker loci in a nonparametric multipoint linkage analysis, markers in strong LD with another marker (r2 > 0.40) were removed (n = 471 loci in the Illumina panel; n = 1,804 loci in the Affymetrix panel) and the linkage analysis results were compared to the results using the entire marker sets. In all analyses using the ALDX1 phenotype, 8 linkage regions on 5 chromosomes (2, 7, 10, 11, X) were detected (peak markers p < 0.01), and the Illumina panel detected an additional region on chromosome 6. Analysis of the same pedigree set and ALDX1 phenotype using short tandem repeat markers (STRs) resulted in 3 linkage regions on 3 chromosomes (peak markers p < 0.01). These results suggest that in this pedigree set, LD between loci with spacing similar to the SNP panels tested may not significantly affect the overall detection of linkage regions in a genome scan. Moreover, since the data quality and information content are greatly improved in the SNP panels over STR genotyping methods, new linkage regions may be identified due to higher information content and data quality in a dense SNP linkage panel.  相似文献   

18.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.  相似文献   

19.
20.
A genome scan was conducted to map the autosomal recessive lethal disorder brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Poll Merino sheep. The scan involved 10 affected and 27 unaffected animals from a single Poll Merino/Merino sheep flock, which were genotyped with the Illumina Ovine SNP50 BeadChip. Association and homozygosity mapping analyses located the disorder in a region comprising 20 consecutive SNPs spanning 1.1 Mb towards the distal end of chromosome OAR2. All affected animals and none of the unaffected animals were homozygous for the associated haplotype in this region. These results provide the basis for identifying the causative mutation(s) and should enable the development of a DNA test to identify carriers in the Poll Merino sheep population. Understanding the molecular control of BCRHS may provide insight into the fundamental genetic control and regulation of the affected organ systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号