首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Polyphenol oxidase (PPO) in red clover (RC) has been shown to reduce both lipolysis and proteolysis in silo and implicated (in vitro) in the rumen. However, all in vivo comparisons have compared RC with other forages, typically with lower levels of PPO, which brings in other confounding factors as to the cause for the greater protection of dietary nitrogen (N) and C18 polyunsaturated fatty acids (PUFA) on RC silage. This study compared two RC silages which when ensiled had contrasting PPO activities (RC+ and RC−) against a control of perennial ryegrass silage (PRG) to ascertain the effect of PPO activity on dietary N digestibility and PUFA biohydrogenation. Two studies were performed the first to investigate rumen and duodenal flow with six Hereford×Friesian steers, prepared with rumen and duodenal cannulae, and the second investigating whole tract N balance using six Holstein-Friesian non-lactating dairy cows. All diets were offered at a restricted level based on animal live weight with each experiment consisting of two 3×3 Latin squares using big bale silages ensiled in 2010 and 2011, respectively. For the first experiment digesta flow at the duodenum was estimated using a dual-phase marker system with ytterbium acetate and chromium ethylenediaminetetraacetic acid as particulate and liquid phase markers, respectively. Total N intake was higher on the RC silages in both experiments and higher on RC− than RC+. Rumen ammonia-N reflected intake with ammonia-N per unit of N intake lower on RC+ than RC−. Microbial N duodenal flow was comparable across all silage diets with non-microbial N higher on RC than the PRG with no difference between RC+ and RC−, even when reported on a N intake basis. C18 PUFA biohydrogenation was lower on RC silage diets than PRG but with no difference between RC+ and RC−. The N balance trial showed a greater retention of N on RC+ over RC−; however, this response is likely related to the difference in N intake over any PPO driven protection. The lack of difference between RC silages, despite contrasting levels of PPO, may reflect a similar level of protein-bound-phenol complexing determined in each RC silage. Previously this complexing has been associated with PPOs protection mechanism; however, this study has shown that protection is not related to total PPO activity.  相似文献   

2.
The main objective of this work was to investigate the electrostatic interaction between lysolecithin and chitosan in two-layer tuna oil-in-water emulsions using nuclear magnetic resonance (NMR) spectroscopy. The influence of chitosan concentration on the stability and properties of these emulsions was also evaluated. The 5 wt% tuna oil one-layer emulsion (lysolecithin-stabilized oil droplets without chitosan) and two-layer emulsions (lysolecithin-chitosan stabilized oil droplets) containing 5 wt% tuna oil, 1 wt% lysolecithin and various chitosan concentrations (0.025–0.40 wt%) were prepared. The one-dimensional (1D) 31P and 1H NMR spectra of emulsions were then recorded at 25 °C. The results showed that addition of chitosan affected the stability and properties of lysolecithin-stabilized one-layer emulsions. The 31P NMR peak of the choline head group on lysolecithin molecules disappeared when chitosan was added at concentrations above neutralization concentration (> 0.05 wt%). The 1H NMR peak intensity monitoring free amino groups (?NH 3 +) of chitosan showed a strong positive linear relationship to the chitosan concentration with a high correlation coefficient (R2 ≈ 0.99). This 1H NMR peak in emulsions could not be detected for chitosan in emulsions lower than saturation concentration (< 0.15 wt%). These phenomena indicate an electrostatic interaction between lysolecithin and chitosan at droplet surface in emulsion and were consistent with the results from zeta-potential measurements. The T 2* relaxation time of the choline head group (N-(CH 3)3) signal of lysolecithin also confirmed that lysolecithin-chitosan electrostatic interaction occurs at the surface of oil droplets in two-layer emulsions. The results suggest that NMR spectroscopy can be used as an alternative method for monitoring the electrostatic interaction between surfactant and oppositely charged electrolytes or biopolymers in two-layer emulsions.  相似文献   

3.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

4.
An emulsification method using a gel-like phase of a saccharide and protein mixture has been developed. In the method, which is called a gel emulsification method, an oil is added to the highly concentrated saccharide solution containing protein to form a clear gel-like phase, which followed by dilution with water to form a fine oil-in-water emulsion. This emulsion was investigated as to its emulsifying activity and emulsion stability as compared with that obtained by high-shear equipment, which was called a homomixer method. The emulsifying activity of the emulsions prepared by the gel emulsification method was much higher than that of the emulsions prepared by the homomixer method.

The emulsions prepared by both methods were highly stable in terms of the stability against coalescence. On the other hand, the stability against creaming of the emulsions prepared by the gel emulsification method was much higher than that of the emulsions prepared by the homomixer method.

The surface hydrophobicity of the protein and the unfreezable water content in the highly concentrated saccharide solution containing protein were not correlated to the emulsifying properties of the emulsions prepared by the gel emulsification method, which appeared to be dependent on the viscosity of the highly concentrated saccharide solution containing protein.  相似文献   

5.
Microgels formed from beta-lactoglobulin were used to prepare oil-in-water emulsions in order to examine their emulsifying capacity. Corn oil emulsions prepared with microgels of pure beta-lactoglobulin at pH 5.8 were initially stable, but a fraction of the droplets quickly flocculated to form a creamed layer that could not be dispersed by shear, which was attributed to hydrophobic attractions between the microgels on adjoining droplets. Emulsions prepared from microgels of beta-lactoglobulin and pectin at pH 4.75 possessed greater droplet sizes at lower concentrations, yet all emulsions were relatively stable to irreversible flocculation. Increased stability of emulsions stabilized by BP-gels was attributed to the presence of pectin on the surface of microgels, which increased repulsions between adjoining droplets. Stable corn oil emulsions were still prepared from microgels that were previously dialyzed to remove non-aggregated protein, which verified that the microgels were responsible for stabilizing emulsion droplets. Equilibrium surface pressure of corn oil droplets was similar between microgels and the unheated beta-lactoglobulin and pectin, yet the dynamic surface pressure was reduced at intermediate times and indicated a slow relaxation and deformation of the microgels at the interface. Microgels formed with pectin stabilized emulsions containing 90 % limonene for up to 5 days of room temperature storage, demonstrating the capacity of such protein microgels to stabilize flavor oil emulsions.  相似文献   

6.
The suitability of water-in-oil-in-water multiple emulsions to encapsulate resveratrol was assessed. Multiple emulsions were prepared by emulsifying a primary emulsion (40 wt.%) in water containing 0.5 wt.% sodium caseinate and 0.1 M NaCl. Four primary emulsions of canola oil (20 wt.%) stabilized by 8 wt.% polyglycerol polyricinoleate were chosen. The dispersed phase of the primary emulsions contained 0.1 M NaCl and either water, 20 wt.% ethanol in water, 2.5 wt.% whey protein isolate (WPI) in water, or 2.5 wt.% WPI and 5 wt.% gelatine in water. Resveratrol was incorporated into these primary emulsions at 0.25 wt.% to give a final 0.02 wt.% resveratrol in the multiple emulsions. Slight increase in particle size with storage at 23 °C for up to 2 weeks was observed. Further, less than 10% of the total encapsulated resveratrol is released to the external, continuous, aqueous phase. This work demonstrates the potential of multiple emulsions to encapsulate resveratrol for food applications.  相似文献   

7.
8.
This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper. For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover. Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover. The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol-protein complexes.  相似文献   

9.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

10.
Increasing the polyunsaturated fatty acid (PUFA) composition of milk is acknowledged to be of benefit to consumer health. Despite the high PUFA content of forages, milk fat contains only about 3% of PUFA and only about 0.5% of n-3 fatty acids. This is mainly due to intensive lipid metabolism in the rumen (lipolysis and biohydrogenation) and during conservation (lipolysis and oxidation) such as drying (hay) and ensiling (silage). In red clover, polyphenol oxidase (PPO) has been suggested to protect lipids against degradation, both in the silage as well as in the rumen, leading to a higher output of PUFA in ruminant products (meat and milk). PPO mediates the oxidation of phenols and diphenols to quinones, which will readily react with nucleophilic binding sites. Such binding sites can be found on proteins, resulting in the formation of protein-bound phenols. This review summarizes the different methods that have been used to assess PPO activity in red clover, and an overview on the current understanding of PPO activity and activation in red clover. Knowledge on these aspects is of major importance to fully harness PPO's lipid-protecting role. Furthermore, we review the studies that evidence PPO-mediated lipid protection and discuss its possible importance in lab-scale silages and further in an in vitro rumen system. It is demonstrated that high (induction of) PPO activity can lead to lower lipolysis in the silage and lower biohydrogenation in the rumen. There are three hypotheses on its working mechanism: (i) protein-bound phenols could directly bind to enzymes (e.g. lipases) as such inhibiting them; (ii) binding of quinones in and between proteins embedded in a lipid membrane (e.g. in the chloroplast) could lead to encapsulation of the lipids; (iii) direct binding of quinones to nucleophilic sites in polar lipids also could lead to protection. There is no exclusive evidence on which mechanism is most important, although there are strong indications that only lipid encapsulation in protein-phenol complexes would lead to an effective protection of lipids against ruminal biohydrogenation. From several studies it has also become apparent that the degree of PPO activation could influence the mode and degree of protection. In conclusion, this review demonstrates that protein-bound phenols and encapsulation in protein-phenol complexes, induced by PPO-mediated diphenol oxidation, could be of interest when aiming to protect lipids against pre-ruminal and ruminal degradation.  相似文献   

11.

Plant-based foods contain numerous bioactive constituents (“nutraceuticals”) that have beneficial effects on human health. However, their oral bioavailability is often relatively low, which limits their potential efficacy. The bioavailability of nutraceuticals can be increased through the utilization of excipient foods whose compositions and structures are specifically designed to increase the amount of nutraceuticals absorbed in an active form. In this study, olive oil excipient emulsions were designed to increase the bioaccessibility of lycopene and other natural antioxidants in tomato pomace. These emulsions consisted of 8 wt% olive oil and 1 wt% Tween 20 or Tween 80 and were prepared using a microfluidizer operated under different processing conditions (12,000 or 20,000 psi; 3 or 5 passes). Changes in particle size, charge, and bioaccessibility were assessed when tomato pomace-emulsion mixtures were exposed to simulated gastrointestinal digestion. The mean particle diameter of the particles in the excipient emulsions increased after digestion (416 to 446 nm) compared to the values before digestion (200 to 220 nm). The presence of excipient emulsions significantly increased the bioaccessibility of lycopene in tomato pomace compared to oil-free control samples. For instance, lycopene bioaccessibility was > 82% when the tomato pomace was mixed with excipient emulsions but only 29% when it was mixed with oil-free buffer solutions. The presence of excipient emulsions also increased the total phenolic content of the tomato pomace. For instance, the phenolic content was considerably higher in the presence of excipient emulsions (1489 to 2055 mg GAE /100 g FW) than in their absence (939 mg GAE /100 g FW). However, the excipient emulsions did not increase naringenin bioaccessibility, which was attributed to the fact that it was not strongly hydrophobic. The efficacy of the excipient emulsions was only modestly dependent on emulsifier type and homogenization conditions. In conclusion, excipient emulsions can be designed to enhance the bioaccessibility of strongly hydrophobic nutraceuticals in tomato-based products, which may boost their healthiness.

Graphical abstract
  相似文献   

12.
《Process Biochemistry》2007,42(2):252-257
To date, the physical properties including the morphology, thermal characteristics, and emulsifying activities of a single sugar α-linked glucuronic acid-based water-soluble oligosaccharides (WSOS) produced by Gluconacetobacter hansenii PJK have not been investigated or published elsewhere. Therefore, the current study was undertaken to investigate these important physical properties of WSOS. Field-emission scanning electron microscopy of the WSOS revealed a porous flake-type structure free from adhered bacterial cells. The degradation of the WSOS occurred by four well-differentiated steps with a maximum weight loss (∼40%) in a range of 230–300 °C. The pyrolysis temperature of the WSOS was found to be 278 °C with an enthalpy of 83.01 J/g. The emulsification ability of the WSOS increased initially with concentration, followed by a decrease, and finally became constant. The optimum concentration of WSOS for maximum emulsification (emulsifying ability) was 0.15% (w/v). The emulsions prepared with WSOS did not exhibit significant stability. The formation of oil and aqueous layers was initiated just after 2 min for emulsion prepared with 0.15% (w/v) WSOS, which completely separated after 24 h. It is concluded that WSOS has thermal stability comparable to other microbial polysaccharides. They have moderate emulsification properties, which may be due to the oligomeric nature of WSOS. Additionally the producer organism of WSOS is non-pathogenic. Therefore, the produced WSOS have potential applications in food and/or pharmaceutical preparations and as therapeutic agent in biomedical fields.  相似文献   

13.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

14.
The purpose of this research was to develop an emulsion formulation of indomethacin (IND) suitable for nasal delivery. IND was incorporated into the oil phases of oil in water (O/W) and water in oil (W/O) emulsions. For this purpose, different emulsifying agents (Tween 80, Span 80 and Brij 58) were used in two emulsion formulations. When the effects of several synthetic membranes (nylon, cellulose, cellulose nitrate) were compared with the sheep nasal mucosa, the cellulose membrane and sheep nasal mucosa showed similar permeation properties for O/W emulsion (P > 0.05). To examine the absorption characteristics of IND, the anti-inflammatory properties of intravenous solution of IND, intranasal O/W emulsions of IND (with or without enhancers) and intranasal solution of IND (IND-Sol) were investigated in rats with carrageenan-induced paw edema. When citric acid was added to the nasal emulsion, the anti-inflammatory activity was similar to that of intravenous solution (P > 0.05). Finally, it was concluded that, intranasal administration of IND emulsion with citric acid may be considered as an alternative to intravenous and per oral administrations of IND to overcome their adverse effects.  相似文献   

15.
Currently, much effort is being invested in novel formulations of bioactive molecules, such as emulsions, for pharmaceutical, food, and cosmetic applications. Therefore, methods to produce emulsions with controlled-size droplets of uniform size distribution have been developed. On this concern, a microfluidic device called the microchannel (MC) was used in this work for emulsification. This is a novel method for producing monodispersed emulsion droplets with very narrow droplet size distribution and low energy input, due to the spontaneous droplet generation basically driven by the interfacial tension, unlike other conventional emulsification processes. This technology provides the formulation of oil-in-water (O/W) emulsions containing lipophilic active molecules with increased bioavailability, which may be readily absorbed by the human body. MC emulsification enables the preparation of highly monodispersed O/W emulsions, which may be applied as enhancer on active molecules delivery systems, as well as in foodstuff. In this study, formulations of O/W emulsions loaded with bioactive molecules, such as β-carotene and γ-oryzanol, were prepared by the MC emulsification process. Refined soybean oil containing the dissolved lipophilic molecule and either sugar ester or gelatin solution (1 wt.%) were used as the dispersed and continuous phases, respectively. The emulsification process conducted using the asymmetric straight-through MC plate enabled the production of monodispersed O/W emulsions, resulting in β-carotene-loaded O/W emulsions with average droplet size (d av) of 27.6 μm and coefficient of variation (CV) of 2.3% and γ-oryzanol-loaded droplets with d av of 28.8 μm and CV of 3.8%. The highly monodisperse β-carotene-loaded droplets were physically stable throughout the storage period observed, resulting in droplets with d av 28.2 μm and CV of 2.9% after 4 months storage in darkness at 5 °C. Single micrometer-sized monodisperse emulsions loaded with β-carotene were successfully formulated using the grooved MC emulsification, resulting in droplets with d av of 9.1 μm and CV of 6.2%. This work was funded by The Ministry of Agriculture, Forestry and Fisheries of Japan, through the Food Nanotechnology Project, and the Japan Society for the Promotion of Science.  相似文献   

16.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

17.
The influence of the nature of the oil phase on the emulsifying behaviour of gum arabic has been investigated at neutral pH. Time-dependent droplet-size distributions are reported for oil-in-water emulsions (1% wt gum, 10% vol. oil) made with n-hexadecane, -limonene and orange oil. Three different gum samples of known analytical composition have been compared, and it is found that the gum giving the most rapid lowering of the tension at the n-hexadecane-water interface also gives the most stable n-hexadecane-in-water emulsions as well as the smallest droplets with all three oils. On the other hand, the same gum gives the poorest stability of the -limonene-in-water and orange oil-in-water emulsions.  相似文献   

18.
The oil-degrading microorganism Acinetobacter venetianus RAG-1 produces an extracellular polyanionic, heteropolysaccharide bioemulsifier termed emulsan. Emulsan forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. Removal of the protein fraction yields a product, apoemulsan, which exhibits much lower emulsifying activity on hydrophobic substrates such as n-hexadecane. One of the key proteins associated with the emulsan complex is a cell surface esterase. The esterase (molecular mass, 34.5 kDa) was cloned and overexpressed in Escherichia coli BL21(DE3) behind the phage T7 promoter with the His tag system. After overexpression, about 80 to 90% of the protein was found in inclusion bodies. The overexpressed esterase was recovered from the inclusion bodies by solubilization with deoxycholate and, after slow dialysis, was purified by metal chelation affinity chromatography. Mixtures containing apoemulsan and either the catalytically active soluble form of the recombinant esterase isolated from cell extracts or the solubilized inactive form of the enzyme recovered from the inclusion bodies formed stable oil-water emulsions with very hydrophobic substrates such as hexadecane under conditions in which emulsan itself was ineffective. Similarly, a series of esterase-defective mutants were generated by site-directed mutagenesis, cloned, and overexpressed in E. coli. Mutant proteins defective in catalytic activity as well as others apparently affected in protein conformation were also active in enhancing the apoemulsan-mediated emulsifying activity. Other proteins, including a His-tagged overexpressed esterase from the related organism Acinetobacter calcoaceticus BD4, showed no enhancement.  相似文献   

19.
This study investigated the potential effect of porcine plasma protein hydrolysates (PPPH) coupled with Tween 20 on the physical and oxidative stability of canola oil-in-water emulsions (10% wt. lipid, pH 7.0). The PPPH obtained via limited alcalase-hydrolysis (60 min) possessed the highest emulsifying activity index and emulsion stability index (P?<?0.05). Emulsions stabilized with PPPH alone were less stable than those prepared with PPPH and Tween 20. However, a lower concentration of PPPH (2.5 mg/mL) combined with Tween 20 formed the most stable emulsions, which is mainly due to competitive adsorption present at the interface. Additionally, compared with PPPH-free emulsions, the addition of PPPH was able to retard lipid oxidation, showing up to an 8.51% decrease in the formation of conjugated dienes and a 22.08% decrease in thiobarbituric acid-reactive substances after 10 days of storage (P?<?0.05). This is mainly attributed to distinct antioxidant amino acid profiles and the distribution of peptides at the interface. Therefore, our results indicate that PPPH derived from limited hydrolysis could be used as both co-emulsifiers and antioxidative compounds in food emulsions.  相似文献   

20.
One of the major trends within the food industry is the replacement of synthetically-derived food additives (e.g. emulsifiers) by natural alternatives. A promising approach is the utilization of saponins that have attracted attention due to their effective emulsifying properties and their natural origin from plants. Panax ginseng is well known in Asian countries for its health benefits that are mainly attributed to amphiphilic triterpene saponins, namely ginsenosides. In this study, we characterized two food-grade ginseng extracts (Finzelberg: FB; CheilJedang: CJ) regarding their chemical composition, surface activity, and effectiveness as emulsifier. Both ginseng extracts reduced the interfacial tension appreciably by up to 80%, and formed negatively charged oil-in-water emulsions at a low emulsifier-to-oil ratio. Ginseng FB formed small submicron-sized emulsions, whereas the mean particle sizes with ginseng CJ were much larger (up to 25 μm). Both ginseng extract-stabilized emulsions were stable towards a range of stresses (pH 4–9, ≤100 mM NaCl) or when stored at ≤25 °C for four weeks. However, the emulsions showed instability at highly acidic conditions (pH 2–3), during the 4-week storage at an elevated temperature (55 °C), and at high ionic strengths (≥250 mM NaCl, >10 mM CaCl2), which was mainly attributed to the reduction or screening of electrostatic repulsion. Emulsion formation and stabilization was proposed to occur via formation of a saponin or biogenic saponin-protein complex layer leading to a stronger interfacial network. In conclusion, both ginseng extracts were able to form emulsions, although ginseng FB extract showed especially remarkable emulsifying properties, similar to the highly effective Quillaja saponaria extract. The results may therefore be helpful in replacing other emulsifiers and formulating emulsion products with varying particle size ranges.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号