首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Direct amplification of the genomic DNA from cultivated and wild Solanum species was used to synthesize three groups of NBS-LRR homologs of the genes which encode the pathogen-recognizing receptor-like serine/threonine kinases (RLK): (1) the NBS-kinase regions homologous to the arabidopsis RPS2 gene, the tobacco N gene, and the flax L6 gene (the corresponding GenBank accession nos. U14158, U15605, and U27081); (2) full-size sequences homologous to the Pto gene of Lycopersicon pimpinellifolium (AF220602); and (3) LRR regions homologous to potato genesGpa2/Rx1 (AJ249449 and AJ011801) and the tomato gene Mi1 (AF091048). The nucleotide and deduced amino acid sequences of the cloned fragments of the genes and pseudogenes were compared to the already known genes and their homologs within the family Solanaceae.  相似文献   

2.
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.  相似文献   

3.
4.
Direct genomic DNA amplification with the primers recognizing the NBS–kinase sequence of the wheat gene Cre3(Genbank accession AF052641) was used to obtain partial homologs of this gene in perennial and annual rye, wheat, and tall wheatgrass. The nucleotide sequences of the cloned fragments and their deduced amino acid sequences were compared to the already-known Cre3homologs in other wheat, aegilops, and barley genotypes. Within the tribe Triticeae, the extent of homology ranged from 86 to 94% for nucleotide sequences and from 74 to 96% for the deduced amino acid sequences, with the most variable region between Kin3 and PR3 conserved motifs.  相似文献   

5.
6.
7.
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1, and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1, and D2) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer.  相似文献   

8.
Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the “particle-receptor” model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.  相似文献   

9.
采用PCR方法扩增NF-YC基因得到其全长cDNA序列,并将其克隆至原核表达载体pET-48b中,在大肠杆菌BL21中用IPTG诱导出分子量约为45 kD的融合蛋白,SDS-PAGE和Western blotting检测鉴定表达产物。利用亲和层析技术对融合蛋白进行纯化,纯化后的目的蛋白免疫新西兰兔制备多克隆抗体。间接ELISA检测抗体效价大于1 62 500,Western blotting结果显示,该抗体可特异性识别NF-YC蛋白。  相似文献   

10.
11.
郝岗平  吴忠义  曹鸣庆  黄丛林  杨清 《遗传学报》2004,31(12):1415-1425
以生长于不同气候条件下的17个拟南芥核心生态型为材料,分析了它们的抗旱转录因子CBF4基因区域的序列多态性。结果表明:拟南芥CBF4基因区域具有高密度的单核苷酸多态性(SNP)和插入缺失(Indel),多态性频率为每35.8bp一个SNP,每143bp一个Indel,基因非编码区的多态性是编码区的4倍;在编码区,SNP的频率为每96.4bp一个SNP,其中发现25av、203av和244av 3个生态型CBF4基因区域1034位(以Gen—Bank登录号AB015478序列第19696位的核苷酸为1)碱基变化:G←→T,引起第205位氨基酸变化:gly←→val。核苷酸多样性统计分析显示,该基因内部大范围内存在连锁不平衡(linkage disequilibrium,LD),5’端非编码区有一个重组。与拟南芥等的研究结果类似,选择压力对不同的区域作用不同。3’端非编码区核苷酸多样性程度最高,是平衡性选择的结果,编码区核苷酸变化符合中性突变假说,而5’端非编码区是自然选择作用的靶位点。  相似文献   

12.
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10− 3 s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.  相似文献   

13.
拟南芥转录因子DYT1的原核表达与多克隆抗体制备   总被引:1,自引:0,他引:1  
以拟南芥雄性不育突变体ms157为材料,对其转录因子DYT1的原核表达进行了分析及多克隆抗体的制备.结果表明:构建的原核表达载体转化入BL21菌株后,经IPTG诱导,表达了分子量约为50 kD的重组蛋白.SDS-PAGE检测结果表明,该重组表达蛋白以可融性形式表达.用该蛋白作为抗原注射新西兰兔后,成功获取了多克隆抗体.Western blotting证实其具良好的免疫原性,ELISA结果表明融合蛋白的效价大于1:5 120.  相似文献   

14.
15.
The Arabidopsis thaliana MYB5 gene is expressed in trichomes and seeds, including the seed coat. Constitutive expression of MYB5 resulted in the formation of more small trichomes and ectopic trichomes and a reduction in total leaf trichome numbers and branching. A myb5 mutant displayed minimal changes in trichome morphology, while a myb23 mutant produced increased numbers of small trichomes and two-branched trichomes. A myb5 myb23 double mutant developed more small rosette trichomes and two-branched trichomes than the single mutants. These results indicate that MYB5 and MYB23 regulate trichome extension and branching. The seed coat epidermal cells of myb5 and myb5 myb23 were irregular in shape, developed flattened columellae, and produced less mucilage than those of the wild type. Among the downregulated genes identified in the myb5 seeds using microarray analysis were ABE1 and ABE4 (α/β fold hydrolase/esterase genes), MYBL2, and GLABRA2. The same genes were also downregulated in transparent testa glabra1 (ttg1) seeds, suggesting that MYB5 collaborates with TTG1 in seed coat development. These genes were upregulated in leaves and roots by ectopically expressed MYB5. The MYBL2, ABE1, and ABE4 promoters were active in seeds, including seed coats, and the latter two also in trichomes. Models of the MYB5 regulatory networks involved in seed coat and trichome development are presented.  相似文献   

16.
17.
18.
19.
20.
The mechanisms by which signals are transmitted across the plasma membrane to regulate signaling are largely unknown for receptors with single-pass transmembrane domains such as the epidermal growth factor receptor (EGFR). A crystal structure of the extracellular domain of EGFR dimerized by epidermal growth factor (EGF) reveals the extended, rod-like domain IV and a small, hydrophobic domain IV interface compatible with flexibility. The crystal structure and disulfide cross-linking suggest that the 7-residue linker between the extracellular and transmembrane domains is flexible. Disulfide cross-linking of the transmembrane domain shows that EGF stimulates only moderate association in the first two α-helical turns, in contrast to association throughout the membrane over five α-helical turns in glycophorin A and integrin. Furthermore, systematic mutagenesis to leucine and phenylalanine suggests that no specific transmembrane interfaces are required for EGFR kinase activation. These results suggest that linkage between ligand-induced dimerization and tyrosine kinase activation is much looser than was previously envisioned.Fundamental to cellular physiology is the ability to transmit extracellular signals across the cell membrane to trigger intracellular responses. Although the extracellular and intracellular portions of cell surface receptors are responsible for detecting ligands and initiating signal cascades, respectively, transmembrane (TM) domains are thought to play critical roles by specifically associating and propagating signals across the phospholipid bilayer. However, the mechanisms by which single-pass TM domains associate and conduct signals are poorly understood.The epidermal growth factor receptor (EGFR) is the prototypical type I TM receptor tyrosine kinase. EGFR and related members of the ErbB family—ErbB2, ErbB3, and ErbB4—contain a glycosylated extracellular ligand binding domain; a single-pass TM domain; and intracellular juxtamembrane, tyrosine kinase, and autophosphorylation domains. The extracellular domain of EGFR binds polypeptide growth factor ligands, such as epidermal growth factor (EGF), to stimulate an array of intracellular signaling cascades that regulate normal and oncogenic cellular growth and proliferation (3, 17, 36). In one model of growth factor-dependent EGFR activation, ligand binding promotes receptor dimerization and activation of intracellular protein tyrosine kinase activity (35); other models suggest that receptors are predimerized on the cell surface and ligand binding alters the equilibrium between inactive and active dimeric (or higher-order oligomeric) configurations (9, 29).Structural mechanisms of growth factor-mediated receptor dimerization and allosteric kinase domain activation have been proposed from recent crystal structures of isolated extracellular ligand binding domains (7) and intracellular tyrosine kinase domains (37). The orientation between the four extracellular domains is dramatically altered upon ligand binding, which frees interfaces that are masked in tethered, unliganded monomers to mediate dimer formation (7). Furthermore, an unusual asymmetric interface between two kinase domain monomers is linked to rearrangement of the kinase site to the active conformation (37). However, neither the position of the last extracellular domain, domain IV, nor association between the TM domains is well-defined experimentally in liganded receptors. The approximate location of domain IV has been suggested by models based on the orientation between domains III and IV in unliganded monomers (7, 12) and two-dimensional negative-stain electron microscopy (EM) averages (27); however, the position of domain IV in the liganded dimer has not been determined in previous crystal structures (13, 30). Thus, it is not known how the extracellular domain positions the TM domains for transmembrane signaling.Several lines of evidence suggest that the TM domain contributes directly to receptor dimerization and signaling. The neu oncogene encodes a Val → Glu substitution in the TM domain of ErbB2 that results in constitutive activation (34). Recombinant EGFR fragments consisting of the extracellular and TM domains have a 105-fold higher affinity for dimerization than the isolated soluble extracellular domains (31). The TM domains of all four ErbB family members self-associate when expressed in bacterial inner membranes (26). A dimeric structure for isolated ErbB2 TM peptides in bicelles has been defined by nuclear magnetic resonance (NMR) imaging (4). However, ErbB2 does not bind ligand and does not physiologically homodimerize (17). Moreover, different ErbB family member TM domains utilize potentially distinct GxxxG sequence motifs to dimerize, as shown with fusion proteins in bacterial membranes (26). However, it is not clear how the TM domains contribute to dimerization and signaling in intact receptors on the cell surface.Here, we characterize the structural basis for EGFR transmembrane signaling. An improved crystal structure of the EGF-bound EGFR extracellular domain resolves domain IV in electron density maps and identifies a small domain IV dimerization interface, the mutation of which does not abolish signaling. The crystal structure and disulfide cross-linking demonstrate a flexible, dimeric linker between the extracellular and transmembrane domains. EGF-induced dimerization of the TM domains involves an interface far less extensive than that found in two receptors that dimerize in the absence of activation. Furthermore, mutagenesis shows that no unique interface is required for transmembrane signaling. Thus, we propose that signal transmission through the EGFR is communicated much more loosely than was previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号