首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:1,自引:0,他引:1  
Variance and covariance components for piglet survival in different periods were estimated from individual records of 133 004 Danish Landrace piglets and 89 928 Danish Yorkshire piglets, using a liability threshold model including both direct and maternal additive genetic effects. At the individual piglet level, the estimates of direct heritability in Landrace were 0.035, 0.057 and 0.027, and in Yorkshire the estimates were 0.012, 0.030 and 0.025 for liability of survival at farrowing (SVB), from birth to day 5 (SV5) and from day 6 to weaning (SVW), respectively. The estimates of maternal heritability for SVB, SV5 and SVW were, respectively, 0.057, 0.040 and 0.030 in Landrace, and 0.050, 0.038 and 0.019 in Yorkshire. Both direct and maternal genetic correlations between the three survival traits were low and not significantly different from zero, except for a moderate direct genetic correlation between SVB and SV5 and between SV5 and SVW in Landrace. Direct and maternal genetic correlations between piglet birth weight (BW) and SV5 were moderately high, but the correlations between BW and SVB and between BW and SVW were low and most of them were not significantly different from zero. These results suggest that effective genetic improvement in piglet survival before weaning by selection should be based on both direct and maternal additive genetic effects and treat survival in different periods as different traits.  相似文献   

2.
籼稻稻米外观品质的细胞质,母体和胚乳遗传效应分析   总被引:14,自引:0,他引:14  
利用浙协2号A等9个籼型不育系和T49等5个籼型恢复系进行不完全双列杂交,研究了籼稻稻米外观品质的遗传效应.结果表明,稻米外观品质性状的表现受制于胚乳、母体和细胞质三套遗传体系.糙米长、长宽比和长厚比等性状以母体遗传率为主,而糙米宽和糙米厚则以胚乳直接遗传率为主,糙米长和长宽比等性状的细胞质遗传率亦很重要.结果还发现外观品质性状间存在着较强的遗传相关,其中糙米长与糙米宽、糙米长与糙米厚、糙米宽与糙米厚、糙米宽与长宽比、糙米厚与长厚比以及糙米长宽比与长厚比性状间以胚乳直接加性和母体加性相关为主.而糙米长与长宽比、糙米长与长厚比、糙米宽与长厚比以及糙米厚与长宽比性状间则以胚乳直接显性和母体显性相关为主.就外观品质的总体情况而言,遗传效应预测值表明参试亲本以V20A、作5A和测早2-2较好,其各种遗传效应能够显著改善稻米品质性状。V20A/102和作5A/测早2-2等组合具有较好的稻米外观品质.  相似文献   

3.
    
Maternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success). We only found support for maternal genetic effect variance in the two neonatal morphological traits: birth weight ( = 0.31) and birth leg length ( = 0.17). For these two traits, the genetic correlation between maternal and direct additive effects was not significantly different from zero, indicating no constraint to evolution from genetic architecture. In contrast, variance in maternal genetic effects enhanced the additive genetic variance available to respond to natural selection. Maternal effect variance was negligible for late-life traits. We found no evidence for sex differences in either the direct or maternal genetic architecture of offspring traits. Our results suggest that maternal genetic effect variance declines over the lifetime, but also that this additional heritable genetic variation may facilitate evolutionary responses of early-life traits.  相似文献   

4.
    
From a physiological-behavioral perspective, it has been shown that fish with a higher density of black eumelanin spots are more dominant, less sensitive to stress, have higher feed intake, better feed efficiency and therefore are larger in size. Thus, we hypothesized that genetic (co)variation between skin pigmentation patterns and growth exists and it is advantageous in rainbow trout. The objective of this study was to determine the genetic relationships between skin pigmentation patterns and BW in a breeding population of rainbow trout. We performed a genetic analysis of pigmentation traits including dorsal color (DC), lateral band (LB) intensity, amount of spotting above (SA) and below (SB) the lateral line, and BW at harvest (HW). Variance components were estimated using a multi-trait linear animal model fitted by restricted maximum likelihood. Estimated heritabilities were 0.08±0.02, 0.17±0.03, 0.44±0.04, 0.17±0.04 and 0.23±0.04 for DC, LB, SA, SB and HW, respectively. Genetic correlations between HW and skin color traits were 0.42±0.13, 0.32±0.14 and 0.25±0.11 for LB, SA and SB, respectively. These results indicate positive, but low to moderate genetic relationships between the amount of spotting and BW in rainbow trout. Thus, higher levels of spotting are genetically associated with better growth performance in this population.  相似文献   

5.
Sources of individual variation in plasma testosterone levels   总被引:2,自引:0,他引:2  
The steroid hormone testosterone (T) plays a central role in the regulation of breeding in males, because many physiological, morphological and behavioural traits related to reproduction are T dependent. Moreover, in many seasonally breeding vertebrates, male plasma T levels typically show a pronounced peak during the breeding season. While such population-level patterns are fairly well worked out, the sources and the implications of the large variability in individual T levels within the seasonal cycle remain surprisingly little understood. Understanding the potential sources of individual variation in T levels is important for behavioural and evolutionary ecologists, for at least two reasons. First, in 'honest signalling' theory, T is hypothesized to play a critical role as the assumed factor that enforces honesty of the expression of sexually selected quality indicators. Second, T is often considered a key mediator of central life-history trade-offs, such as investment in survival versus reproduction or in mating versus parental care. Here, we discuss the patterns of within- and between-individual variation in male plasma T levels in free-living populations of birds. We argue that it is unclear whether this variability mainly reflects differences in underlying individual quality (intrinsic factors such as genetic or maternal effects) or in the environment (extrinsic factors including time of day, individual territorial status and past experience). Research in avian behavioural endocrinology has mainly focused on the effects of extrinsic factors, while other sources of variance are often ignored. We suggest that studies that use an integrative approach and investigate the relative importance of all potential sources of variation are essential for the interpretation of data on individual plasma T levels.  相似文献   

6.
    
A total of 19 376 test day (TD) milk yield records from the first three lactations of 1618 cows daughters of 162 sires were used to estimate genetic and phenotypic parameters and determine the relationship between daily milk yield and lactation milk yield in the Sahiwal cattle in Kenya. Variance components were estimated using animal models based on a derivative free restricted maximum likelihood procedure. Variance components were estimated using various univariate and multi-trait fixed regression test day models (TDM) that defined contemporary groups either based on the year-season of calving (YSCV) or on the year-season of TD milk sampling (YSTD). Variance components were influenced by CG which resulted in differences in heritability and repeatability estimates between TDM. Models considering YSTD resulted in higher additive genetic variances and lower residual variances compared with models in which YSCV was considered. Heritability estimates for daily yield ranged from 0.28 to 0.46, 0.38 to 0.52 and 0.33 to 0.52 in the first, second and third lactation, respectively. In the first and second lactation, the heritability estimates were highest between TD 2 and TD 4. Genetic correlations among daily milk yields ranged from 0.41 to 0.93, 0.50 to 0.83 and 0.43 to 86 in the first, second and third lactation, respectively. The phenotypic correlations were correspondingly lower. Genetic correlations were different from unit when fitting multi-trait TDM. Therefore, a multiple trait model would be more ideal in determining the genetic merit of dairy sires and bulls based on daily yield records. Genetic and phenotypic correlations between daily yield and lactation yields were high and positive. Genetic correlations ranged from 0.84 to 0.99, 0.94 to 1.00 and 0.94 to 0.97 in the first, second and third lactations, respectively. The corresponding phenotypic correlation estimates ranged from 0.50 to 0.85, 0.50 to 0.83 and 0.53 to 0.87. The high genetic correlation between daily yield and lactation yield imply that both traits are influenced by similar genes. Therefore daily yields records could be used in genetic evaluation in the Sahiwal cattle breeding programme.  相似文献   

7.
In the Ram Mountain bighorn sheep (Ovis canadensis) population, ewes differing by more than 30% in body mass weaned lambs with an average mass difference of only 3%. Variability in adult body mass was partly due to additive genetic effects, but inheritance of weaning mass was weak. Maternal effects could obscure genetic effects in the phenotypic expression of weaning mass, particularly if they reflected strategies of maternal expenditure that varied according to ewe mass. We performed a quantitative genetic analysis to assess genetic and environmental influences on ewe mass and on maternal expenditure. We used the mean daughters/mother regression method and Derivative Free Restricted Maximum Likelihood models to estimate heritability (h2) of ewe mass and indices of maternal expenditure. We found additive genetic effects on phenotypic variation in maternal mass, in lamb mass at weaning (absolute maternal expenditure) and in weaning mass relative to maternal mass at weaning (relative maternal expenditure). Heritability suggests that maternal expenditure has the potential to evolve. The genetic correlation of ewe mass and absolute maternal expenditure was weak, while ewe mass and relative maternal expenditure were strongly negatively correlated. These results suggest additive genetic effects on mass‐dependent reproductive strategies in bighorn ewes. Mass‐dependent reproductive strategies could affect lamb survival and phenotypic variation in adult mass. As population density increased and reproduction became costlier, small females reduced maternal expenditure more than large females. Constraints on reproductive strategy imposed by variations in resource availability are therefore likely to differ according to ewe mass. A general trend for a decrease in maternal expenditure relative to maternal size in mammals suggests that size‐dependent negative maternal effects may be common.  相似文献   

8.
Sources of variation in growth in body mass were assessed in natural and experimental conditions of high and low food abundance using reciprocal cross-fostering techniques and long-term data (1987-2002) for a population of North American red squirrels (Tamiasciurus hudsonicus). Growth rates were significantly higher in naturally good and food supplemented conditions, than in poor conditions. Mother-offspring resemblance was higher in poor conditions as a result of large increases in both the direct genetic variance and direct-maternal genetic covariance and a smaller increase in the coefficient of maternal variation. Furthermore, the genetic correlation across environments was significantly less than one indicating that sources of heritable variation differed between the two environments. These results are consistent with the hypothesis that selection has eroded heritable variation for growth more in good conditions and indicate the potential for independent adaptation of growth rates in good and poor conditions.  相似文献   

9.
    
Heritable maternal effects have important consequences for the evolutionary dynamics of phenotypic traits under selection, but have only rarely been tested for or quantified in evolutionary studies. Here we estimate maternal effects on early-life traits in a feral population of Soay sheep (Ovis aries) from St Kilda, Scotland. We then partition the maternal effects into genetic and environmental components to obtain the first direct estimates of maternal genetic effects in a free-living population, and furthermore test for covariance between direct and maternal genetic effects. Using an animal model approach, direct heritabilities (h2) were low but maternal genetic effects (m2) represented a relatively large proportion of the total phenotypic variance for each trait (birth weight m2=0.119, birth date m2=0.197, natal litter size m2=0.211). A negative correlation between direct and maternal genetic effects was estimated for each trait, but was only statistically significant for natal litter size (ram= -0.714). Total heritabilities (incorporating variance from heritable maternal effects and the direct-maternal genetic covariance) were significant for birth weight and birth date but not for natal litter size. Inadequately specified models greatly overestimated additive genetic variance and hence direct h2 (by a factor of up to 6.45 in the case of birth date). We conclude that failure to model heritable maternal variance can result in over- or under-estimation of the potential for traits to respond to selection, and advocate an increased effort to explicitly measure maternal genetic effects in evolutionary studies.  相似文献   

10.
11.
  总被引:4,自引:0,他引:4  
Maternal effects are widespread and can have dramatic influences on evolutionary dynamics, but their genetic basis has been measured rarely in natural populations. We used cross-fostering techniques and a long-term study of a natural population of red squirrels, Tamiasciurus hudsonicus, to estimate both direct (heritability) and indirect (maternal) influences on the potential for evolution. Juvenile growth in both body mass and size had significant amounts of genetic variation (mass h(2) = 0.10; size h(2) = 0.33), but experienced large, heritable maternal effects. Growth in body mass also had a large positive covariance between direct and maternal genetic effects. The consideration of these indirect genetic effects revealed a greater than three-fold increase in the potential for evolution of growth in body mass (h(2)t = 0.36) relative to that predicted by heritability alone. Simple heritabilities, therefore, may severely underestimate or overestimate the potential for evolution in natural populations of animals.  相似文献   

12.
    
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

13.
    
Estimates of (co)variance components were obtained for weights at birth, weaning and at 6, 9 and 12 months of age in Jamunapari goats maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India, over a period of 23 years (1982 to 2004). Records of 4301 kids descended from 204 sires and 1233 does were used in the study. Analyses were carried out by restricted maximum likelihood (REML), fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weights at birth, weaning and at 6, 9 and 12 months of age were 0.12, 0.18, 0.13, 0.17 and 0.21, respectively. Maternal heritability of body weight declined from 0.19 at birth to 0.08 at weaning and was near zero and not significant thereafter. Estimates of the fraction of variance due to maternal permanent environmental effects were 0.09, 0.13 and 0.10 for body weights at weaning, 6 months and 9 months of age, respectively. Results suggest that maternal additive effects were important only in the early stages of growth, whereas a permanent environmental maternal effect existed from weaning to 9 months of age. These results indicate that modest rates of genetic progress appear possible for all weights.  相似文献   

14.
The genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population were estimated by applying the Average Information Restricted Maximum Likelihood method to an animal model. Data from a flock supported by the Programa de Melhoramento Genético de Caprinos e Ovinos de Corte (GENECOC) were used. The traits studied included birth weight (BW), weaning weight (WW), slaughter weight (SW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to slaughter (GWS), weight gain from weaning to yearling (GWY), age at first lambing (AFL), lambing interval (LI), gestation length (GL), lambing date (LD - number of days between the start of breeding season and lambing), litter weight at birth (LWB) and litter weight at weaning (LWW). The direct heritabilities were 0.35, 0.81, 0.65, 0.49, 0.20, 0.15 and 0.39 for BW, WW, SW, YW, GBW, GWS and GWY, respectively, and 0.04, 0.06, 0.10, 0.05, 0.15 and 0.11 for AFL, LI, GL, LD, LWB and LWW, respectively. Positive genetic correlations were observed among body weights. In contrast, there was a negative genetic correlation between GBW and GWS (-0.49) and GBW and GWY (-0.56). Positive genetic correlations were observed between AFL and LI, LI and GL, and LWB and LWW. These results indicate a strong maternal influence in this herd and the presence of sufficient genetic variation to allow mass selection for growth traits. Additive effects were of little importance for reproductive traits, and other strategies are necessary to improve the performance of these animals.  相似文献   

15.
Related individuals often have similar phenotypes, but this similarity may be due to the effects of shared environments as much as to the effects of shared genes. We consider here alternative approaches to separating the relative contributions of these two sources to phenotypic covariances, comparing experimental approaches such as cross-fostering, traditional statistical techniques and more complex statistical models, specifically the 'animal model'. Using both simulation studies and empirical data from wild populations, we demonstrate the ability of the animal model to reduce bias due to shared environment effects such as maternal or brood effects, especially where pedigrees contain multiple generations and immigration rates are low. However, where common environment effects are strong, a combination of both cross-fostering and an animal model provides the best way to avoid bias. We illustrate ways of partitioning phenotypic variance into components of additive genetic, maternal genetic, maternal environment, common environment, permanent environment and temporal effects, but also show how substantial confounding between these different effects may occur. Whilst the flexibility of the mixed model approach is extremely useful for incorporating the spatial, temporal and social heterogeneity typical of natural populations, the advantages will inevitably be restricted by the quality of pedigree information and care needs to be taken in specifying models that are appropriate to the data.  相似文献   

16.
    
This research investigated two sources of sire-specific genetic effects on the birth weight (BWT) and weaning weight (WWT) of Bruna dels Pirineus beef calves. More specifically, we focused on the influence of genes located in the non-autosomal region of the Y chromosome and the contribution of paternal imprinting. Our analyses were performed on 8130 BWT and 1245 WWT records from 12 and 2 purebred herds, respectively, they being collected between years 1986 and 2010. All animals included in the study were registered in the Yield Recording Scheme of the Bruna dels Pirineus breed. Both BWT and WWT were analyzed using a univariate linear animal model, and the relevance of paternal imprinting and Y chromosome-linked effects were checked by the deviance information criterion (DIC). In addition to sire-specific and direct genetic effects, our model accounted for random permanent effects (dam and herd-year-season) and three systematic sources of variation, that is, sex of the calf (male or female), age of the dam at calving (six levels) and birth type (single or twin). Both weight traits evidenced remarkable effects from the Y chromosome, whereas paternal imprinting was only revealed in WWT. Note that differences in DIC between the preferred model and the remaining ones exceed 39 000 and 2 800 000 DIC units for BWT and WWT, respectively. It is important to highlight that Y chromosome accounted for ∼2% and ∼6% of the total phenotypic variance for BWT and WWT, respectively, and paternal imprinting accounted for ∼13% of the phenotypic variance for WWT. These results revealed two relevant sources of sire-specific genetic variability with potential contributions to the current breeding scheme of the Bruna dels Pirineus beef cattle breed; moreover, these sire-specific effects could be included in other beef cattle breeding programs or, at least, they must be considered and appropriately analyzed.  相似文献   

17.
18.
    
Diplacus aurantiacus contains large amounts of a leaf phenolic resin, an important deterrent to a leaf-eating caterpillar, Euphydryas chalcedona. The resin can also retard water loss during drought. Furthermore, the leaf resin content differs among plants and populations. This study investigates the existence of heritable variation (h2) in resin production and tests for a genetic correlation (rG) between carbon allocation to secondary metabolites and growth rate, as well as with three other vegetative traits. Nine dam and 10 sire plants were chosen randomly at a field site and used to generate 78 full-sib families (19 half-sib families) by crossing all males to all females in a factorial design. Heritability was estimated in two ways, and genetic correlations were estimated by three methods. We found: (1) the heritability of resin production estimated by the regression of offspring on sires was significantly greater than zero ; (2) the maternal variance in resin content was significantly greater than zero (21.3% of total phenotypic variance); (3) significant negative genetic correlation between resin content and growth rate was observed from two of three methods and was consistent with the phenotypic correlation; and (4) the cost of resin could be assessed quantitatively. The genetic cost of 1 mg in resin is equivalent to 25 mg of dry shoot-biomass growth, but the phenotypic cost is only 2.1 mg. This study indicates that carbon allocation to these secondary metabolites may respond to natural selection, and the phenotypic cost of resin production has a genetic basis in D. aurantiacus. This trade-off suggests that once selection occurs, increased phenolic resin production may result in decreased growth, or vice versa.  相似文献   

19.
    
The aim of this study was to estimate (co)variance components for milk coagulation properties (MCP) predicted by mid-infrared spectroscopy (MIRS) during routine milk recording, and to assess their relationships with yield and quality traits. A total of 63 470 milk samples from Holstein-Friesian cows were analyzed for MCP, pH and quality characteristics using MIRS. Casein to protein and protein to fat ratios were calculated from information obtained by MIRS. Records were collected across 1 year on 16 089 cows in 345 herds. The model used for genetic analysis included fixed effects of parity and stage of lactation, and random effects of herd-test-day, cow permanent environmental, animal additive genetic and residual. (Co)variance components were assessed in a Bayesian framework using the Gibbs Sampler. Estimates of heritabilities were consistent with those reported in the literature, being moderate for MCP (0.210 and 0.238 for rennet coagulation time (RCT) and curd firmness (a30), respectively), milk contents (0.213 to 0.333) and pH (0.262), and low for somatic cell score (0.093) and yield traits (0.098 to 0.130). Repeatabilities were 0.391 and 0.434 for RCT and a30, respectively, and genetic correlations were generally low, with estimates greater than 0.30 (in absolute value) only for a30 with fat, protein and casein contents. Overall, results suggest that genetic evaluation for MCP predicted by MIRS is feasible at population level, and several repeated measures per cow during a lactation are required to estimate reliable breeding values for coagulation traits.  相似文献   

20.
Consistent individual differences in behaviour, and behavioural correlations within and across contexts, are referred to as animal personalities. These patterns of variation have been identified in many animal taxa and are likely to have important ecological and evolutionary consequences. Despite their importance, genetic and environmental sources of variation in personalities have rarely been characterized in wild populations. We used a Bayesian animal model approach to estimate genetic parameters for aggression, activity and docility in North American red squirrels (Tamiasciurus hudsonicus). We found support for low heritabilities (0.08-0.12), and cohort effects (0.07-0.09), as well as low to moderate maternal effects (0.07-0.15) and permanent environmental effects (0.08-0.16). Finally, we found evidence of a substantial positive genetic correlation (0.68) and maternal effects correlation (0.58) between activity and aggression providing evidence of genetically based behavioural correlations in red squirrels. These results provide evidence for the presence of heritable variation in red squirrel behaviour, but also emphasize the role of other sources of variation, including maternal effects, in shaping patterns of variation and covariation in behavioural traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号