首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we found that α3β1 integrin–deficient neonatal mice develop micro-blisters at the epidermal–dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of α3β1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of α3β1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of α3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and α-actinin at focal contact sites in the α3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to α3β1 deficiency. Apart from the loss of α3β1 there is no change in expression of the other integrins expressed by the α3-null keratinocytes. However, in functional assays, α3β1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of α3β1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.  相似文献   

2.
Integrins mediate cell-cell and cell-extracellular matrix attachments. Integrins are signaling receptors because their cytoplasmic tails are docking sites for cytoskeletal and signaling proteins. Kindlins are a family of band 4.1-ezrin-radixin-moesin-containing intracellular proteins. Apart from regulating integrin ligand-binding affinity, recent evidence suggests that kindlins are involved in integrin outside-in signaling. Kindlin-3 is expressed in platelets, hematopoietic cells and endothelial cells. In humans, loss of kindlin-3 expression accounts for the rare autosomal disease leukocyte adhesion deficiency (LAD) type III that is characterized by bleeding disorders and defective recruitment of leukocytes into sites of infection. Studies have shown that the loss of kindlin-3 expression leads to poor ligand-binding properties of β1, β2 and β3 integrin subfamilies. The leukocyte-restricted β2 integrin subfamily comprises four members, namely αLβ2, αMβ2, αXβ2 and αDβ2. Integrin αMβ2 mediates leukocyte adhesion, phagocytosis, degranulation and it is involved in the maintenance of immune tolerance. Here we provide further evidence that kindlin-3 is required for integrin αMβ2-mediated cell adhesion and spreading using transfected K562 cells that expressed endogenous kindlin-3 but not β2 integrins. K562 stable cell line expressing si-RNA targeting kindlin-3, but not control-si-RNA, and transfected with constitutively activated integrin αMβ2N329S adhered and spread poorly on iC3b. We also show that kindlin-3 is required for the integrin αMβ2-Syk-Vav1 signaling axis that regulates Rac1 and Cdc42 activities. These findings reinforce a role for kindlin-3 in integrin outside-in signaling.  相似文献   

3.
Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvβ6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non–small cell lung cancer. However, the cross talk between αvβ6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvβ6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvβ6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvβ6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvβ6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvβ6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvβ6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvβ6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8–mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvβ6 and IL-8 may be the key for the treatment of lung cancer.  相似文献   

4.
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin αvβ3 is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the αvβ3 receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the αvβ3 integrin/integrin-linked kinase/ERK signaling pathway.  相似文献   

5.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

6.
We have characterised a protein of approximately 80kD previously observed to co-immunoprecipitate with the α3β1 integrin in lysates of surface labelled human epiderrnalkerati-nocytes. The 80kD protein only appeared when keratinocytes were harvested with trypsin/EDTA prior to lysis and a protein of similar molecular mass could be immunoprecipitated from human dermal fibroblasts following treatment of the cells with trypsin/EDTA. N terminal sequencing established that the 80kD protein had homology with the as integrin subunit. Peptide-mass fingerprinting was used to confirm that the protein comprised the amino terminus of α3 and established that the site of cleavage was after amino acid 629. The 80kD fragment could be coimmunoprecipitated with α3β1 using an antibody to the cytoplasmic domain of the α3 subunit, showing that the fragment remained complexed with intact α3β1. When antibodies to the cytoplasmic and extracellular domains of α3 were used to label human epidermis by immunofluorescence, the staining patterns were indistinguishable and there is therefore no evidence that proteolysis of α3 plays a role in keratinocyte detachment from the basement membrane during terminal differentiation. Whether the 80kD fragment has any effects, positive or negative, on α3β1-mediated adhesion remains to be determined.  相似文献   

7.
The purpose of this study is to investigate the anti-metastatic effect of α-mangostin on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions in A549 human lung adenocarcinoma cells. Firstly, α-mangostin could inhibit PMA-induced abilities of the adhesion, invasion, and migration. Data also showed α-mangostin could inhibit the activation of αvβ3 integrin, focal adhesion kinase (FAK), and extracellular signal-regulated kinase1/2 (ERK1/2) involved in the downregulation the enzyme activities, protein and messenger RNA levels of MMP-2 and MMP-9 induced by PMA. Next, α-mangostin also strongly inhibited PMA-induced degradation of inhibitor of kappaBα (IκBα) and the nuclear levels of nuclear factor kappa B (NF-κB). Also, a dose-dependent inhibition on the binding abilities of NF-κB by α-mangostin treatment was further observed. Furthermore, reduction of FAK or ERK1/2 phosphorylation by FAK small interfering RNA (FAK siRNA) potentiated the effect of α-mangostin. Finally, the transient transfection of ERK siRNA significantly down-regulated the expressions of MMP-2 and MMP-9 concomitantly with a marked inhibition on cell invasion and migration. Presented results indicated α-mangostin is a novel, effect, anti-metastatic agent that functions by downregulating MMP-2 and MMP-9 gene expressions.  相似文献   

8.
Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes α5β1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with α5β1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active α5β1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with α5β1, and the associated motor myosin VI (Myo6) support active α5β1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active α5β1. Nrp1 modulation of α5β1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice.  相似文献   

9.
Psoriasis, a common inflammatory skin disease, is characterized by epidermal hyperplasia, abnormal differentiation, angiogenesis, immune activation, and inflammation. Involucrin is an early terminal differentiation marker of epidermal keratinocytes. In this study, we determined the immunolocalization of involucrin in psoriatic lesions and normal skin of individuals without psoriasis by means of immunofluorescence (IF) assay. Furthermore, the regulation of involucrin by interleukin (IL)-13, IL-17A, endothelin (ET)-1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ was investigated by Western blot. Extracellular regulate protein kinases 1/2 (ERK1/2) and glycogen syntheses kinase-3β (GSK-3β) inhibitors were also included to define the roles of these signals in the production of involucrin in both psoriatic and normal keratinocytes. In psoriatic lesional skin, involucrin was detected in the stratum spinosum, but not in the basal or the cornified layer. In normal skin, involucrin was restricted to the granular layer and the upper stratum spinosum. IL-13, IL-17A, ET-1, TNF-α, and IFN-γ up-regulate expression of involucrin in both psoriatic and normal keratinocytes. However, this effect was abolished by ERK1/2 and GSK-3β inhibitors. In conclusion, involucrin is up-regulated in psoriatic keratinocytes. IL-13, IL-17A, ET-1, TNF-α, and IFN-γ could increase involucrin protein levels in psoriatic and normal keratinocytes. The ERK1/2 and GSK-3β signaling pathways may play positive roles in regulating epidermal differentiation as observed in psoriasis.  相似文献   

10.
α3β1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that α3β1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, α3β1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, α3β1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

11.
The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen.  相似文献   

12.

Background/purpose

The goal of this study was to determine the role of the collagen binding receptor integrin α1β1 in regulating osmotically induced [Ca2+]i transients in chondrocytes.

Method

The [Ca2+]i transient response of chondrocytes to osmotic stress was measured using real-time confocal microscopy. Chondrocytes from wildtype and integrin α1-null mice were imaged ex vivo (in the cartilage of intact murine femora) and in vitro (isolated from the matrix, attached to glass coverslips). Immunocytochemistry was performed to detect the presence of the osmosensor, transient receptor potential vanilloid-4 (TRPV4), and the agonist GSK1016790A (GSK101) was used to test for its functionality on chondrocytes from wildtype and integrin α1-null mice.

Results/interpretation

Deletion of the integrin α1 subunit inhibited the ability of chondrocytes to respond to a hypo-osmotic stress with [Ca2+]i transients ex vivo and in vitro. The percentage of chondrocytes responding ex vivo was smaller than in vitro and of the cells that responded, more single [Ca2+]i transients were observed ex vivo compared to in vitro. Immunocytochemistry confirmed the presence of TRPV4 on wildtype and integrin α1-null chondrocytes, however application of GSK101 revealed that TRPV4 could be activated on wildtype but not integrin α1-null chondrocytes. Integrin α1β1 is a key participant in chondrocyte transduction of a hypo-osmotic stress. Furthermore, the mechanism by which integrin α1β1 influences osmotransduction is independent of matrix binding, but likely dependent on the chondrocyte osmosensor TRPV4.  相似文献   

13.
Chondrocyte plays a critical role in endochondral ossification and cartilage repair by maintaining the cartilaginous matrix. Statins have been widely used to lower the cholesterol level in patients with cardiovascular disorders. Previous research has demonstrated potential role of statins in chondrocyte proliferation. This study addresses the proliferation-regulatory effect of lovastatin in rabbit chondrocytes as well as the underlying signaling mechanisms, thereby exploring its potential application in chondrocyte-related disorders, such as cartilage damage and osteoarthritis. Rabbit chondrocytes were treated with lovastatin at multiple concentrations, and the proliferation rate was measured by CCK-8 test. The results showed significant increase in chondrocyte proliferation under lovastatin treatment. Using real-time quantitative PCR, it was observed that the expression levels of COL2A1, SOX-9, Caspase-3, and MMP-3 genes were significantly changed by lovastatin treatment. Western blotting analysis showed that the abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, Caspase-3, and MMP-3 proteins was also significantly influenced by lovastatin treatment. Interleukine-1 beta (IL-1β) is involved in the progression of osteoarthritis (OA) by inducing articular cartilage and chondrocyte aging and senescence. In this study, we observed that lovastatin treatment inhibited IL-1β-induced chondrocyte apoptosis, while the combined treatment of lovastatin and U0126 evidently offset the apoptosis-inhibiting effect of lovastatin in chondrocyte proliferation. The expressional level and protein abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, caspase-3, and MMP-3 genes showed significant alterations under the combined treatment. Together, our results suggested that lovastatin significantly promoted proliferation and inhibited the IL-1β-induced apoptosis in rabbit chondrocytes, which was mediated by the MEK/ERK signaling.  相似文献   

14.
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.  相似文献   

15.
Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy.  相似文献   

16.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   

17.
The integrin α4β1(VLA4) has been expressed as a soluble, active, heterodimeric immunoglobulin fusion protein. cDNAs encoding the extracellular domains of the human α4 and β1 subunits were fused to the genomic DNA encoding the human γ1 immunoglobulin Fc domain and functional integrin fusion protein was expressed as a secreted, soluble molecule from a range of mammalian cell lines. Specific mutations were introduced into the Fc region of the molecules to promote α4β1 heterodimer formation. The soluble α4β1 Fc fusion protein exhibited divalent cation dependent binding to VCAM-1, which was blocked by the appropriate function blocking antibodies. The apparent Kd for VCAM-1 binding were similar for both the soluble and native forms of α4β1. In addition, the integrin–Fc fusion was shown to stain cells expressing VCAM-1 on their surface by FACs analysis. This approach for expressing soluble α4β1 should be generally applicable to a range of integrins.  相似文献   

18.
19.
It is currently believed that inactive tyrosine kinase c-Src in platelets binds to the cytoplasmic tail of the β3 integrin subunit via its SH3 domain. Although a recent NMR study supports this contention, it is likely that such binding would be precluded in inactive c-Src because an auto-inhibitory linker physically occludes the β3 tail binding site. Accordingly, we have re-examined c-Src binding to β3 by immunoprecipitation as well as NMR spectroscopy. In unstimulated platelets, we detected little to no interaction between c-Src and β3. Following platelet activation, however, c-Src was co-immunoprecipitated with β3 in a time-dependent manner and underwent progressive activation as well. We then measured chemical shift perturbations in the 15N-labeled SH3 domain induced by the C-terminal β3 tail peptide NITYRGT and found that the peptide interacted with the SH3 domain RT-loop and surrounding residues. A control peptide whose last three residues where replaced with those of the β1 cytoplasmic tail induced only small chemical shift perturbations on the opposite face of the SH3 domain. Next, to mimic inactive c-Src, we found that the canonical polyproline peptide RPLPPLP prevented binding of the β3 peptide to the RT- loop. Under these conditions, the β3 peptide induced chemical shift perturbations similar to the negative control. We conclude that the primary interaction of c-Src with the β3 tail occurs in its activated state and at a site that overlaps with PPII binding site in its SH3 domain. Interactions of inactive c-Src with β3 are weak and insensitive to β3 tail mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号