首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
核小体是真核生物染色质的基本单位,通过对组蛋白核心的N-端的乙酰化、甲基化、磷酸化、遍在蛋白化的修饰作用而影响细胞的功能。组蛋白乙酰化酶(histone acetylase HAT)及组蛋白去乙酰化酶(Histone Deacetylases HDAC)之间的动态平衡控制着染色质的结构和基因表达。当组蛋白去乙酰化水平增加,乙酰化水平相对降低,即会导致正常的细胞周期与代谢行为的改变而诱发肿瘤,及神经退行性变。组蛋白去乙酰化酶抑制剂(Histone Deacetylases-inhibitor HDACi)目前是国内外研究的热点。其中,曲古霉素A(Trichostatin A TSA),是最早发现的天然组蛋白去乙酰化酶抑制剂;伏立诺他(Suberoylanilide Hydroxamic Acid SAHA)已经美国FDA批准用于治疗皮肤T细胞淋巴瘤。本文就HDACi分类及其功能出发综述HDACi的作用机制及研究进展。  相似文献   

2.
在真核细胞 ,尽管一些转录活性基因和转录沉默基因的调控序列位置常常非常接近 ,它们的表达却并不互相影响。这是由于一些边界元件将染色体分成了不同的区域。障碍子就是边界元件的一种 ,它可以使活性基因的表达免受异染色质的作用 ,防止基因沉默。概述障碍子的作用机制和作用模型。  相似文献   

3.
Amounts of soluble histones in cells are tightly regulated to ensure supplying them for the newly synthesized DNA and preventing the toxic effect of excess histones. Prior to incorporation into chromatin, newly synthesized histones H3 and H4 are highly acetylated in pre-deposition complex, wherein H4 is di-acetylated at Lys-5 and Lys-12 residues by histone acetyltransferase-1 (Hat1), but their role in histone metabolism is still unclear. Here, using chicken DT 40 cytosolic extracts, we found that histones H3/H4 and their chaperone Asf1, including RbAp48, a regulatory subunit of Hat1 enzyme, were associated with Hat1. Interestingly, in HAT1-deficient cells, cytosolic histones H3/H4 fractions on sucrose gradient centrifugation, having a sedimentation coefficient of 5–6S in DT40 cells, were shifted to lower molecular mass fractions, with Asf1. Further, sucrose gradient fractionation of semi-purified tagged Asf1-complexes showed the presence of Hat1, RbAp48 and histones H3/H4 at 5–6S fractions in the complexes. These findings suggest the possible involvement of Hat1 in regulating cytosolic H3/H4 pool mediated by Asf1-containing cytosolic H3/H4 pre-deposition complex.  相似文献   

4.
Histone deacetylases (HDACs) function in a wide range of molecular processes, including gene expression, and are of significant interest as therapeutic targets. Although their native complexes, subcellular localization, and recruitment mechanisms to chromatin have been extensively studied, much less is known about whether the enzymatic activity of non-sirtuin HDACs can be regulated by natural metabolites. Here, we show that several coenzyme A (CoA) derivatives, such as acetyl-CoA, butyryl-CoA, HMG-CoA, and malonyl-CoA, as well as NADPH but not NADP(+), NADH, or NAD(+), act as allosteric activators of recombinant HDAC1 and HDAC2 in vitro following a mixed activation kinetic. In contrast, free CoA, like unconjugated butyrate, inhibits HDAC activity in vitro. Analysis of a large number of engineered HDAC1 mutants suggests that the HDAC activity can potentially be decoupled from "activatability" by the CoA derivatives. In vivo, pharmacological inhibition of glucose-6-phosphate dehydrogenase (G6PD) to decrease NADPH levels led to significant increases in global levels of histone H3 and H4 acetylation. The similarity in structures of the identified metabolites and the exquisite selectivity of NADPH over NADP(+), NADH, and NAD(+) as an HDAC activator reveal a previously unrecognized biochemical feature of the HDAC proteins with important consequences for regulation of histone acetylation as well as the development of more specific and potent HDAC inhibitors.  相似文献   

5.
The abnormal accumulation of Cu2+ is closely correlated with the incidence of different diseases, such as Alzheimer's disease and Wilson disease. To study in vivo functions of Cu2+ will lead to a better understanding of the nature of these diseases. In the present study, effect of Cu2+ on histone acetylation was investigated in human hepatoma cells. Exposure of cells to Cu2+ resulted in a significant decrease of histone acetylation, as indicated by the decrease of the overall histone acetylation and the decrease of histone H3 and H4 acetylation. Since histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlled the state of histone acetylation in vivo, we tested their contribution to the inhibition of Cu2+ on histone acetylation. One hundred nanomolar trichostatin A, the specific inhibitor of HDAC, did not attenuate the inhibitory effect of Cu2+ on histone acetylation. Combined with that Cu2+ showed no effect on the in vitro activity of HDAC, these results led to the conclusion that it is HAT, but not HDAC that is involved in Cu2+ -induced histone hypoacetylation. This conclusion was confirmed by the facts that (1) Cu2+ significantly inhibited the in vitro activity of HAT, (2) Cu2+ -treated cells possessed a lower HAT activity than control cells, and (3) 50 or 100 microM bathocuproine disulfonate, a chelator of Cu2+, significantly attenuated the inhibition of Cu2+ on HAT activity and histone acetylation in the similar pattern. Combined with that Cu2+ showed no or obvious cytotoxicity at 100 or 200 microM in human hepatoma cells, and the previous study that Cu2+ inhibits the histone H4 acetylation of yeast cells at nontoxic or toxic levels, the data presented here suggest that inhibiting histone acetylation is probably one general in vivo function of Cu2+, where HAT is its molecular target.  相似文献   

6.
Post-translational modifications of histones have been correlated with virtually all chromatin-templated processes, including gene expression regulation, DNA replication, mitosis and meiosis, and DNA repair. In order to better understand the mechanistic basis by which histone modifications participate in the control of cellular processes, it is essential to identify and characterize downstream effector proteins, or "readers", that are responsible for recognizing different marks and translating them into specific biological outcomes. Ideally, identification of potential histone-binding effectors should occur in an unbiased fashion. Although in the recent years much progress has been made in identifying readers of histone modifications, in particular methylation, recognition of the majority of known histone marks is still poorly understood. Here I describe a simple and unbiased biochemical pull-down assay that allows for the identification of novel histone effector proteins and utilizes biotinylated histone peptides modified at various residues. I provide detailed protocols and suggestions for troubleshooting.  相似文献   

7.
8.
Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.  相似文献   

9.
The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases. [BMB Reports 2015; 48(12): 685-690]  相似文献   

10.
The 1,10-orthophenanthroline (OP)–Cu2+ combination, one generally used reactive oxygen species (ROS) generation system, is known to induce cell apoptosis, but the mechanism of ROS generation in this process remains unclear. Here we found that in the presence of 5 M Cu2+, OP inhibited histone acetyltransferase (HAT) activity, resulting in decreased acetylation in both histone H3 and H4. This inhibition of histone acetylation and HAT activity was significantly attenuated by preventing or scavenging ROS generation with the Cu2+ chelator of bathocuproine disulfonate, or the antioxidants of N-acetyl-cysteine and mannitol, respectively, indicating the involvement of ROS generation in OP–Cu2+ -induced histone hypoacetylation. At the same time, this ROS generation is found to be involved in OP–Cu2+ -induced apoptosis in human hepatoma Hep3B cells. The important role of histone hypoacetylation in the induction of apoptosis was also proven by the marked diminution of apoptosis by 100 nM trichostatin A, a specific inhibitor of histone deacetylase, or the overexpression of p300, an HAT protein. Collectively, these observations suggest that histone hypoacetylation represents one unrevealed mechanism involved in the in vivo function of OP–Cu2+ -generated ROS, at least in their induction of cell apoptosis.  相似文献   

11.
12.
Yeast histones H2A, H3 and H4 were specifically extracted from purified nuclei using a 2% NaCl/75% ethanol solution. The extraction resulted in the complete removal of H2A, H3 and H4 from the nuclear pellet, as monitored by SDS-polyacrylamide gel electrophoresis of the protein. The relative absence of nonhistone proteins from this histone subset simplifies the determination of the extent of histone modification in yeast. Levels of H4 acetylation were measured directly on Coomassie blue-stained Triton acid-urea gels and the levels verified by gel fluorography of the [3H]acetate-labeled histone.  相似文献   

13.
14.
Pyrrolidine dithiocarbamate (PDTC) has been considered as a potential anticancer drug due to its powerful apoptogenic effect towards cancer cells, where Cu(2+) plays a distinct yet undefined role. Here we report that Cu(2+) is critically needed for PDTC to inhibit histone acetylation in both human leukemia HL-60 cells and human hepatoma Hep3B cells. The inhibition of histone acetylation mainly resulted from the increase of intracellular Cu(2+), but was not due to the inhibition of NF-kappaB activity by PDTC-Cu(2+) since the combinations of Cu(2+) with SN50, MG132 (two known NF-kappaB inhibitors), or bathocuproine disulfonate (BCS, a specific Cu(2+) chelator that does not cross the plasma membrane), did not lead to obvious inhibition of histone acetylation. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlling the state of histone acetylation in vivo. Cells exposed to PDTC-Cu(2+) showed a comparable decrease in histone acetylation levels in HL-60 cells in the absence or presence of the HDAC inhibitors, trichostatin A (TSA) or sodium butyrate (NaBu); the inhibition rates were about 45, 44 and 43%, respectively. PDTC-Cu(2+) had no effect on the activity of HDAC in vitro, but significantly inhibited the HAT activity both in HL-60 cells and in a cell-free in vitro system. PDTC-Cu(2+) also induced HL-60 cell apoptosis, and treating cells with TSA, NaBu or BCS significantly attenuated the apoptosis induced by PDTC-Cu(2+). Collectively, these results showed that inhibition of histone acetylation represents a distinct mechanism for the cytotoxicity of PDTC in the presence of Cu(2+), where HAT is its possible molecular target.  相似文献   

15.
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.  相似文献   

16.
17.
18.
Methotrexate (MTX) is a dihydrofolate reductase (DHFR) inhibitor widely used for treating human cancers, and overexpression of histone deacetylase (HDAC) is usually found in tumors. HDAC inhibitors (HDACi) can reactivate tumor suppressor genes and serve as potential anti-cancer drugs. In this study, we found that MTX shared structural similarity with some HDACi and molecular modeling showed that MTX indeed docks into the active site of HDLP, a bacterial homologue of HDAC. Subsequent in vitro assay demonstrated MTX’s inhibition on HDAC activity in human cancer cells. The global acetylation of histone H3 was also induced by MTX. Moreover, MTX inhibited immunoprecipitated HDAC1/2 activity but not their protein levels. This study provides evidence that MTX inhibits HDAC activity.  相似文献   

19.
The human polybromo-1 protein is thought to localize the Polybromo, BRG1-associated factors chromatin-remodeling complex to kinetochores during mitosis via direct interaction of its six tandem bromodomains with acetylated nucleosomes. Bromodomains are acetyl-lysine binding modules roughly 100 amino acids in length originally found in chromatin associated proteins. Previous studies verified acetyl-histone binding by each bromodomain, but site-specificity, a central tenet of the histone code hypothesis, was not examined. Here, the acetylation site-dependence of bromodomain-histone interactions was examined using steady-state fluorescence anisotropy. Results indicate that single bromodomains bind specific acetyl-lysine sites within the histone tail with sub-micromolar affinity. Identification of duplicate target sites suggests that native Pb1 interacts with both copies of histone H3 upon nucleosome assembly. Quantitative analysis of single bromodomain-histone interactions can be used to develop hypotheses regarding the histone acetylation pattern that acts as the binding target of the native polybromo-1 protein.  相似文献   

20.
Epigenetic information is encoded in post-translational modifications (PTMs) of histones. Various combinations of these marks contribute to the regulation of chromatin-templated DNA metabolisms. The histone code is gradually translated into biological responses in model organisms. However, in the silkworm, the modifications of histones with unique holocentric chromosomes have not yet been analyzed. TAU-PAGE analysis of the silkworm histone variants H2A, H2B, and H3, separated by RP-HPLC, suggested silkworm specific modification. Detailed mass spectrometry analyses of the peptides derived from the N-terminus of the silkworm H3.2 generated by glutamyl endopeptidase, lysyl endopeptidase, and trypsin digestions revealed global modifications around H3K9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号