首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M. G. Erwee  P. B. Goodwin 《Planta》1983,158(4):320-328
The hydrophyllic dyes fluorescein glutamic acid, fluorescein glutamylglutamic acid (F(Glu)2), fluorescein hexaglycine, fluorescein leucyldiglutamyl-leucine and 6-carboxyfluorescein are unable to pass the plasmalemma in leaves of E. densa. However, when injected into single cells the dye conjugates of molecular weight 665 dalton or less move freely from cell-to-cell. This intercellular movement presumably occurs via the plant symplast. Movement of F(Glu)2 from the injected cell occurs with greatly reduced frequency when Ca2+, Mg2+ or Sr2+ are injected into the cell immediately prior to the dye. The fraction of dye injections leading to movement declines with increasing group II ion concentration in the electrode tip, up to 10 mM. Sodium and K ions do not affect dye movement. When dye injection is delayed 30 min after Ca2+ injection, dye movement is no longer inhibited. Thus the cells recover from the Ca2+ injection, indicating that the ion does not cause major cell damage. Recovery from Mg2+ injection is not complete within 60 min. Treatment of leaves with chemicals expected to raise the concentration of free intracellular group II ions, notably the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, the inhibitor of mitochondrial Ca2+ uptake trifluralin, or the ionophore A23187 also inhibits dye movement, while the calmodulin inhibitor trifluoperazine does not. Cytoplasmic streaming is inhibited by Ca2+ or Mg2+ injection and by the metabolic inhibitors. However when streaming is stopped by cytochalasin B, dye movement is not inhibited. Hence steaming is not necessary for dye movement. Thus the cytoplasmic concentration of free group II ions may directly regulate the permeability of the plant symplast.  相似文献   

2.
A set of hydrophilic fluorescent dyes of known molecular weight has been used to determine the molecular exclusion limit and the extent of apical, epidermal and cortical symplasts in the root, stem and leaf of Egeria densa. These dyes are unable to pass the plasmalemma, so that any cell-to-cell movement of injected dye must occur via the symplast. The shoot-apex symplast has a high molecular exclusion limit, excluding dyes with a molecular weight of 749 dalton (fluorescein hexaglycine) and greater but allowing dyes of up to 665 dalton (fluorescein diglutamic acid) to pass. The leaf epidermal symplast is similar to that in the apex: fluorescein pentaglycine (674 dalton) moves to a limited extent, but fluorescein hexaglycine is immobile. Stem and root epidermal cells have a lower molecular exclusion limit, only the dye 6-carboxyfluorescein (376 dalton) is able to move from cell-to-cell. Cortical and epidermal tissues in both the stem and the root have similar symplast permeabilities. However, a barrier to dye (6-carboxyfluorescein) movement is found between the epidermis and the cortex in both organs. Barriers are also found at the nodes between expanded internodes. The stem barriers are not found in the unexpanded nodes near the shoot tip; apparently they are formed early during internode expansion. In the root tip, a barrier to the movement of dye is found between the root cap and the remainder of the root. Plasmodesmata are found linking all cell types studied, even cells where barriers to dye movement occur. Thus, the plant, far from being one uniform symplast, consists of a large number of symplast domains, which may or may not differ in molecular exclusion limit.Abbreviations F fluorescein isothiocyanate isomer I - Glu l-glutamic acid - (Glu)2 l-glutamylglutamic acid - (Gly)5 l-pentaglycine - (Gly)6 l-hexaglycine  相似文献   

3.
Hydrobiologia - Submerged plants are thought to negatively affect phytoplankton crops in the temperate zone by a number of mechanisms, including nutrient and light limitation, and enhancement of...  相似文献   

4.
We identified factors influencing biomass and nutrient content in E. densa in an enriched pampean stream of Argentina. Physical (current velocity, temperature), chemical (pH, conductivity, dissolved oxygen, nutrient content in water and sediments), and biological variables (biomass and nutrient content of E. densa, biomass of periphyton and other macrophytes) were estimated at each sampling occasion, and mean monthly values estimated. Biomass and nutrient content in E. densa were correlated with these physical-chemical and biological variables. Biomass was positively correlated with ammonium in stream water (P<0.05) and sediment total nitrogen (P<0.01). Nitrogen showed a positive relationship with ammonium (P<0.01), and a negative one with nitrate and periphyton biomass (P<0.05). Phosphorus was positively correlated with soluble reactive phosphorus (P<0.01). The growth of other macrophyte species in the stream seemed to influence E. densa biomass, probably through competition for light. Current velocity was low and not significantly related with E. densa biomass, however, a flood at the beginning of the study washed the macrophyte stand downstream.  相似文献   

5.
Previous data in Egeria densa leaves demonstrated a strong inhibitory effect of Cs+ on passive K+ influx and on K+-induced, ATP-dependent electrogenic proton extrusion. In this paper we analyzed, using the same material, the effects of Cs+ on ammonium (NH4+) and methylammonium (CH3NH3+) transport in order to elucidate whether a common transport system for K+ and NH4+ could be demonstrated. The effects of Cs+ on NH4+- and CH3NH3+-induced titratable H+ extrusion (–ΔH+) and on transmembrane electrical potential difference (Em) in E. densa leaves were analyzed in parallel. All experiments were run either in the absence or presence of fusicoccin, corresponding to low or high H+-ATPase activity and membrane hyperpolarization and leading, in this material, to respectively active or passive transport of K+. The results suggest the presence in E. densa leaves of two distinct pathways for NH4+ uptake: one in common with NH4+ and (with lower affinity) CH3NH3+, insensitive to Cs+, and a second system, operating at higher H+-ATPase activity and Em hyperpolarization, strongly inhibited by Cs+ and impermeable to CH3NH3+. In agreement with this hypothesis, Xenopus laevis oocytes injected with the KAT1 RNA of Arabidopsis thaliana were permeable to K+ and NH4+, but not to CH3NH3+.  相似文献   

6.
Action spectra of light-induced membrane hyperpolarization andphotosynthetic oxygen evolution were determined in cells ofEgeria densa. Since both spectra were similar, photosyntheticpigments are assumed to be involved in the light-induced membranehyperpolarization. However, the saturation levels of light fluenciesdiffered greatly between the two light reactions. Light-inducedhyperpolarization reached the maximum level at a light fluenceless than one-tenth that needed for saturation of photosynthesis. (Received June 5, 1985; Accepted November 13, 1985)  相似文献   

7.
Identification of myosin in a flowering plant, Egeria densa.   总被引:4,自引:0,他引:4  
A myosin-like protein was extracted and partially purified from a flowering plant, Egeria densa. It had no p-nitrophenyl phosphatase activity, but exhibited EDTA(K+)-ATPase [EC 3.6.1.3] activity at high ionic strength. Its molecular weight as estimated by gel filtration was 4-5 X 10(5). The presence of a heavy chain (MW = about 1.8 X 10(5)) was indicated by SDS-gel electrophoresis. Egeria myosin aggregated in an environment of low ionic strength and formed bipolar filaments. It bound with skeletal muscle F-actin with a periodicity of 40 nm.  相似文献   

8.
A vigorous and transient increase of O2 uptake associated with a simultaneous release of CO2 was elicited in Egeria densa and in Potamogeton crispus leaves by treatment with N-ethylmaleimide (NEM) and by other -SH group reagents (iodoacetate, p-(chloromercuri)benzenesulfonate (p-CMBS), Ag+, Hg2+, Cu2+). The NEM-induced respiratory burst was apparent even in the absence of photosynthesis (darkness, or presence of DCMU) as well as in the presence of the respiration inhibitors cyanide and propyl gallate or SHAM, separate or in combination. In contrast, a complete suppression of the respiratory burst was induced by diphenylene iodonium and by quinacrine, inhibitors of the plasma membrane NADPH oxidase activated in the pathogen-elicited oxidative burst in granulocytes and in plants. The respiratory burst induced by NEM and by the uncoupler CCCP were additive. The intensity of the respiratory burst was markedly decreased by increasing the pH of the medium from 5 to 8, and partially decreased by the presence of K+ in the medium. Azide inhibited the burst (as well as basal respiration) at pH 6.5 but not at pH 5. The stimulation of QO2 by SH reagents was associated with an early, pronounced membrane depolarization together with a rapid increase of the release into the medium of K+ and other electrolytes, and with a rapid decrease of the intracellular ATP, ADP and G6 P contents. The possible relationships between this SH reagent-induced respiratory burst and the associated effects on Em and electrolyte leakage are discussed.  相似文献   

9.
Photosynthetic mechanisms have been compared in leaves and, separately, in stems of Egeria densa Planch. In order to correlate the structural and functional characteristics of the two organs (1) the ultrastructural features of leaves and stems have been studied and (2) their photosynthetic activity has been evaluated by measuring in vivo both oxygen evolution and the kinetics of chlorophyll fluorescence. The results confirm the aquatic behaviour of the leaf which is able to utilize inorganic C supplied both as CO2 and HCO 3 . In this respect, the different wall organization found in the two cell layers of the leaf is particularly interesting, since it could be related to the known polar mechanism of inorganic-C uptake. The stem, by contrast, behaves rather as an aerial organ, needing very high CO2 concentrations in the aquatic environment in order to carry out photosynthesis. In the stem, the aerenchyma plays a role in supplying the green cells with gaseous respiratory CO2, thus facilitating the photosynthetic activity of the submerged stems.The authors are grateful to C.U.G.A.S. (University of Padua) for the use of the scanning electron microscope. They also wish to thank Mr. Claudio Furlan and Mr. Giorgio Varotto for helpful technical assistance. This work was supported by a grant from C.N.R. and M.P.I, and was developed within the cooperation agreement between the Universities of Padova (Italy) and Innsbruck (Austria).  相似文献   

10.
11.
Rotational cytoplasmic streaming in leaves of Egeria densa wasinduced by light as well as by L-histidine (L-His). During bothtreatement with light and with L-His chloroplasts on the periclinalface were dislodged and moved to the anticlinal face where rotationalcytoplasmic streaming occurred. The effective concentrationof L-His was about 0.01 mM and the effect was almost saturatedat 0.1 mM. A derivative of L-His, 3-methyl-L-histidine, wasslightly less effective than L-His. By contrast, 1-methyl-L-histidinewas almost ineffective for induction of streaming, not onlyin Egeria but also in Vallisneria. Our resutlts are in markedcontrast to Fitting's result (1936) that 1-M-L-His is more effectivethan L-His. In Egeria, 1-methyl-L-His counteracted the stimulativeeffect of L-His. 1-Methyl-L-His penetrated into leaf cells ofEgeria to the same extent as 3-methyl-L-His and to a greaterextent than L-His. This observation excludes the possibilitythat the impermeability of leaves to 1-M-L-His might be responsiblefor its ineffectiveness. 1-M-L-His did not interfere with photodinesis.Differences in the mechanism of induction of rotational streamingby L-His and by light are discussed. 4 Present address: Fukui Institute of Technology, Gakuen, Fukui,910 Japan (Received July 16, 1990; Accepted December 20, 1990)  相似文献   

12.
It was previously shown that a number of sulfhydryl [SH] group reagents (N-ethylmaleimide [NEM], iodoacetate, Ag+, HgCl2, etc.) can induce a marked, transitory stimulation of O2 uptake (QO2) in Egeria densa leaves, insensitive to CN and salicylhydroxamic acid and inhibited by diphenylene iodonium and quinacrine. The phytotoxin fusicoccin (FC) also induces a marked increase in O2 consumption in E. densa leaves, apparently independent of the recognized stimulating action on the H+-ATPase. In this investigation we compared the FC-induced increase in O2 consumption with those induced by NEM and Ag+, and we tested for a possible interaction between FC and the two SH blockers in the activation of QO2. The results show (a) the different nature of the FC- and NEM- or Ag+-induced increases of QO2; (b) that FC counteracts the NEM- (and Ag+)-induced respiratory burst; and (c) that FC strongly reduces the damaging effects on plasma membrane permeability observed in E. densa leaves treated with the two SH reagents. Two alternative models of interpretation of the action of FC, in activating a CN-sensitive respiratory pathway and in suppressing the SH blocker-induced respiratory burst, are proposed.  相似文献   

13.
Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses. Received: 18 March 1996/Revised: 17 July 1996  相似文献   

14.
Egeria densa is an aquatic higher plant which has developed different mechanisms to deal with photosynthesis under conditions of low CO2 availability. On the one hand it shows leaf pH-polarity, which has been proposed to be used for bicarbonate utilization. In this way, at high light intensities and low dissolved carbon concentration, this species generates a low pH at the adaxial leaf surface. This acidification shifts the equilibrium HCO3/CO2 towards CO2, which enters the cell by passive diffusion. By this means, E. densa increases the concentration of CO2 available for photosynthesis inside the cells, when this gas is limiting. On the other hand, under stress conditions resulting from high temperature and high light intensities, it shows a biochemical adaptation with the induction of a C4-like mechanism but without Kranz anatomy. Transfer from low to high temperature and light conditions induces increased levels of phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 1.1.1.40), both key enzymes participating in the Hatch-Slack cycle in plants with C4 metabolism. Moreover, one PEPC isoform, whose synthesis is induced by high temperature and light, is phosphorylated in the light, and changes in kinetic and regulatory properties are correlated with changes in the phosphorylation state of this enzyme. In the present review, we describe these two processes in this submersed angiosperm that appear to help it perform photosynthesis under conditions of extreme temperatures and high light intensities.  相似文献   

15.
《Aquatic Botany》2005,83(3):227-238
Incidence data of two native submerged aquatic macrophytes (Egeria najas Planch. and Egeria densa Planch.) were obtained in eight arms of a large (1350 km2) subtropical reservoir (Itaipu Binacional Reservoir, Brazil-Paraguay). Environmental variables were measured simultaneously. Two large-scale surveys in the same localities identified by a global positioning system were carried out in April 1999 (n = 235) and January 2001 (n = 230). Logistic regressions were used to test the effect of environmental variables on the likelihood of E. najas and E. densa presence or absence. The two species were found under different environmental conditions: conductivity, light attenuation coefficient (k) and fetch were, in this order, the most important environmental variables in predicting the probability of occurrence of E. najas, whereas light attenuation coefficient was the main predictor of the probability of occurrence of E. densa. Thus, both species were negatively affected by the light attenuation coefficient. However, this effect was stronger in E. densa. The small area occupied by these species may be accounted for by the permanent high turbidity of Itaipu Reservoir. Additionally, the dominance of E. najas over of E. densa can be explained by the probably higher light requirements of E. densa. In other reservoirs worldwide, with higher water transparency, the opposite is frequently true. Between 1999 and 2001, an episodic water-level drawdown (5 m) caused the disappearance of submerged vegetation. After water-level normalization, previous vegetation presence (in 1999) was an important predictor of the probability of occurrence of E. najas in 2001.  相似文献   

16.
The early effects of penconazole (PCZ) at relatively high concentration (10?4 to 5 × 10?4 M) on changes in pH and in titratable acidity of the medium, transmembrane electrical potential difference (Em), electrolyte leakage and cell morphology were investigated in Egeria densa leaves. At the lowest (10?4 M) concentration and in the presence of a very low (10 μM) K+ concentration, triazole induced an early, moderate hyperpolarization of Em, associated with a decrease of net K+ uptake, suggesting some increase in the passive permeability to K+. This Em hyperpolarization was no longer detectable at high (2 mM) K+out concentration. At high PCZ concentrations (3 × 10?4 M and 5 × 10?4 M) the early hyperpolarization detectable in the presence of a low K+out concentration became transient, and was followed by a marked depolarization. PCZ, at these concentrations, suppressed acidification of the medium, stimulated electrolyte leakage and, in the mesophyll cells, induced some shrinking of the cytoplasm and its disconnection from the cell walls. These results are interpreted as due to an early effect of this triazole leading to the disorganization of the plasma membrane.  相似文献   

17.
We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, δ18O cellulose = 0.48 δ18O water + 24.1%‰. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of 18O in the form of O2 bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O2 of normal 18O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water.  相似文献   

18.
《Aquatic Botany》2007,86(3):236-242
Competition between two invasive plants of similar growth form, Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch), was studied in response to season and sediment fertility. These two invasive species were grown in outdoor concrete tanks in monocultures and mixtures. Five fertilization rates were tested for monocultures and two for mixtures where six combinations of planting densities were used in two seasons (spring and fall). Monitoring of plant biomass was made at the end of each of these 2-month-experiments. In contrast to E. densa, clear seasonal patterns in biomass production and in reproductive allocations of H. verticillata were evident. Competitive pressure for both species was lower during the fall experiment. Biomass production increased with fertilization for H. verticillata in monocultures and changes either in allocative ratios or in tuber production patterns were shown in response to nutrient availability. However, E. densa growth was not affected by fertilization. In most cases, H. verticillata was a better competitor than E. densa except when sediment was pure sand. Competition occurred mainly for nutrient uptake rather than for light harvesting. These results suggest that despite the similar ecology, H. verticillata may outcompete E. densa in many situations, probably due to its higher plasticity.  相似文献   

19.
We have compared the movement of a series of fluorescent tracers of increasing molecular weight injected into the cytoplasm in the epidermal cells of leaves of Egeria densa Planch. In general, the tracers showed major movement into three cellular compartments: first, to the cytoplasm of adjacent cells; secondly, from the cytoplasm, to the vacuole (irreversible); and thirdly, from the cytoplasm to the nucleus (reversible). No visible accumulation in chloroplasts or mitochondria, or loss across the plasmalemma was observed. No evidence for metabolic breakdown was found in extracts from injected leaves. The time course of accumulation of the dye in the three major compartments (cytoplasm, nucleus, vacuole) was monitored using fluorescence microscopy. The rate measurements and the quantified geometry of the cells were used to generate a model of compartmentation during intercellular transport. Permeability coefficients were calculated and related to the molecular sizes of the tracers. The coefficients for the tonoplast and nuclear envelope were independent of the molecular sizes of the tracers, and were in the range 2.4·10–6–4.1· 10–6 cm·s–1 for the tonoplast, and 2.6·10–5-9.4.10–5 cm· s–1 for the nuclear envelope. For intercellular movement, permeabilities were strongly dependent on molecular size, and ranged from 1.1·10–4 cm·s–1 for 6-carboxyfluorescein (376 daltons (Da)) to 9·10–9 cm·s–1 for fluorescein leucyldiglutamylleucine (874 Da). Thus, the differences in cell-to-cell movement of these tracers are based upon their differing ability to cross the intercellular walls, not upon differences in their intracellular compartmentation.Abbreviations 6COOHF 6-Carboxyfluorescein - Da daltons - DAPI 4,6-diamidino-2-phenylindole - F fluorescein-isothiocyanate isomer I - FGlu fluorescein glutamic acid - F(Glu)2 fluorescein glutamyl-glutamic acid - F(Gly)6 fluorescein hexaglycine - FLGGL fluorescein leucyl diglutamyl-leucine This work was supported by the Australian Research Grant Scheme. The assistance of Professor B.E.S. Gunning (Australian National University, Canberra, ACT) in providing facilities for making the photometer measurements is gratefully acknowledged.  相似文献   

20.
In vivo phosphorylation of PEPC in Egeria densa was studied using plants at high temperature and in light, and plants kept at low temperature and in light. The isoform induced by high temperature and light was more phosphorylated in the light. Changes in kinetic and regulatory properties correlated with changes in the phosphorylation state of PEPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号