首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subacute ruminal acidosis (SARA) is characterized by ruminal pH depression and microbial perturbation. The impact of SARA adaptation and recovery on rumen bacterial density and diversity was investigated following high-grain feeding. Four ruminally cannulated dairy cows were fed a hay diet, transitioned to a 65% grain diet for 3 weeks, and returned to the hay diet for 3 weeks. Rumen fluid, rumen solids, and feces were sampled during weeks 0 (hay), 1 and 3 (high grain), and 4 and 6 (hay). SARA was diagnosed during week 1, with a pH below 5.6 for 4.6±1.4 h. Bacterial density was significantly lower in the rumen solids with high grain (P=0.047). Rumen fluid clone libraries from weeks 0, 3, and 6 were assessed at the 98% level and 154 operational taxonomic units were resolved. Week 3 diversity significantly differed from week 0, and community structure differed from weeks 0 and 6 (P<0.0001). Clones belonging to the phylum Firmicutes predominated. Compared with the hay diet, the high-grain diet contained clones from Selenomonas ruminantium and Succiniclasticum ruminis, but lacked Eubacterium spp. SARA adaptation was found to significantly alter bacterial density, diversity, and community structure, warranting further investigation into the role bacteria play in SARA adaptation.  相似文献   

2.
This study was aimed to investigate the impact of subacute ruminal acidosis (SARA) on the diversity of liquid (LAB) and solid-associated bacteria (SAB) following high-grain feeding. Six ruminally cannulated goats were divided into two groups: one group was fed a hay diet (COD), and the other group was fed a high grain diet (SAID). Rumen liquids and rumen solids were sampled after 2 weeks adaption. SARA was diagnosed with a pH below 5.8 for 8 h. SAID decreased ruminal pH (P < 0.001) and increased the acetate (P = 0.017), propionate (P = 0.001), butyrate (P < 0.001) and total volatile fatty acid (P < 0.001) concentration in rumen compared with the COD. Denaturing gradient gel electrophoresis fingerprints analysis revealed a clear separation between both the diet and the fraction of rumen digesta in bacterial communities. Pyrosequencing analysis showed that the proportion of phylum Bacteroidetes in the SAID-LAB and SAID-SAB communities was less than in the COD group, whereas the SAID group had a greater percentage of Firmicutes in both the LAB and SAB libraries. UniFrac analyses and a Venn diagram revealed a large difference between the two diets in the diversity of rumen bacterial communities. Overall, our findings revealed that SARA feeding did alter the community structure of rumen liquids and rumen solids. Thus, manipulation of dietary factors, such as ratio of forage to concentrate may have the potential to alter the microbial composition of rumen liquid and rumen solid.  相似文献   

3.
This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.  相似文献   

4.
Alterations in rumen epithelial structure and function during grain-induced subacute ruminal acidosis (SARA) are largely undescribed. In this study, four mature nonlactating dairy cattle were transitioned from a high-forage diet (HF; 0% grain) to a high-grain diet (HG; 65% grain). After feeding the HG diet for 3 wk, the cattle were transitioned back to the original HF diet, which was fed for an additional 3 wk. Continuous ruminal pH was measured on a weekly basis, and rumen papillae were biopsied during the baseline and at the first and final week of each diet. The mean, minimum, and maximum daily ruminal pH were depressed (P < 0.01) in the HG period compared with the HF period. During the HG period, SARA was diagnosed only during week 1, indicating ruminal adaptation to the HG diet. Microscopic examination of the papillae revealed a reduction (P < 0.01) in the stratum basale, spinosum, and granulosum layers, as well as total depth of the epithelium during the HG period. The highest (P < 0.05) papillae lesion scores were noted during week 1 when SARA occurred. Biopsied papillae exhibited a decline in cellular junctions, extensive sloughing of the stratum corneum, and the appearance of undifferentiated cells near the stratum corneum. Differential mRNA expression of candidate genes, including desmoglein 1 and IGF binding proteins 3, 5, and 6, was detected between diets using qRT-PCR. These results suggest that the structural integrity of the rumen epithelium is compromised during grain feeding and is associated with the differential expression of genes involved in epithelial growth and structure.  相似文献   

5.
Cereal grains treated with organic acids were proved to increase ruminal resistant starch and can relieve the risk of ruminal acidosis. However, previous study mainly focussed on acid-treated barley, the effects of organic acid-treated corn is still unknown. The objectives of this study were to evaluate whether feeding ground corn steeped in citric acid (CA) would affect ruminal pH and fermentation patterns, milk production and innate immunity responses in dairy goats. Eight ruminally cannulated Saanen dairy goats were used in a crossover designed experiment. Each experimental period was 21 day long including 14 days for adaption to new diet and 7 days for sampling and data collection. The goats were fed high-grain diet contained 30% hay and 70% corn-based concentrate. The corn was steeped either in water (control) or in 0.5% (wt/vol) CA solution for 48 h. Goats fed CA diet showed improved ruminal pH status with greater mean and minimum ruminal pH, and shorter (P<0.05) duration of ruminal pH<5.6 and less area of ruminal pH<5.6, 5.8 and 6.0. Concentration of total volatile fatty acid and molar proportion of propionate were less but the molar proportion of acetate was greater (P<0.05) in goats fed the CA diet than the control diet. Concentration of ruminal lipopolysaccharide (LPS) was lower (P<0.05) and that of lactic acid also tended (P<0.10) to be lower in goats fed CA than the control. Although dry matter intake, actual milk yield, yield and content of milk protein and lactose were not affected, the milk fat content and 4% fat-corrected milk tended (P<0.10) to be greater in goats fed CA diet. For the inflammatory responses, peripheral LPS did not differ, whereas the concentration of LPS binding protein and serum amyloid A tended (P<0.10) to be less in goats fed CA diet. Similarly, goats fed CA diet had less (P<0.05) concentration of haptoglobin and tumour necrosis factor. These results indicated that feeding ground corn treated with CA effectively improved ruminal pH status, thus alleviated the risk of ruminal acidosis, reduced inflammatory response, and tend to improve milk yield and milk fat test.  相似文献   

6.
The aim of this study was to investigate changes of stress status in dairy goats induced to subacute ruminal acidosis (SARA). The level of acute phase proteins (APPs) including haptoglobin (HP) and serum amyloid A (SAA) in plasma and their mRNA expression in liver, as well as plasma cortisol and genes expression of key factors controlling cortisol synthesis in adrenal cortex were compared between SARA and control goats. SARA was induced by feeding high concentrate diet (60% concentrate of dry matter) for 3 weeks (SARA, n=6), while control goats (Con, n=6) received a low concentrate diet (40% concentrate of dry matter) during the experimental time. SARA goats showed ruminal pH below 5.8 for more than 3 h per day, which was significantly lower than control goats (pH>6.0). SARA goats demonstrated a significant increase of hepatic HP and SAA mRNA expression (P<0.05), and the level of HP but not SAA in plasma was markedly increased compared with control (P<0.05). The level of cortisol in plasma showed a trend to increase in SARA goats (0.05<P<0.1). In adrenal cortex, mRNA expression of 17α-hydroxylase cytochrome (P45017α) (P<0.01) and 3β-hydroxysteroid dehydrogenase (3β-HSD) (P<0.05) was significantly increased in SARA goats. The contents of 3β-HSD and P450 side-chain cleavage protein were increased by 58.6% and 39.4%, respectively, but did not reach the statistical significance (P>0.05). These results suggested that SARA goats experienced a certain stress status, exhibiting an increase in HP production and cortisol secretion.  相似文献   

7.
High-starch diets (HSDs) fed to high-producing ruminants are often responsible for rumen dysfunction and could impair animal health and production. Feeding HSDs are often characterized by transient rumen pH depression, accurate monitoring of which requires costly or invasive methods. Numerous clinical signs can be followed to monitor such diet changes but no specific indicator is able to make a statement at animal level on-farm. The aim of this pilot study was to assess a combination of non-invasive indicators in dairy cows able to monitor a HSD in experimental conditions. A longitudinal study was conducted in 11 primiparous dairy cows fed with two different diets during three successive periods: a 4-week control period (P1) with a low-starch diet (LSD; 13% starch), a 4-week period with an HSD (P2, 35% starch) and a 3-week recovery period (P3) again with the LSD. Animal behaviour was monitored throughout the experiment, and faeces, urine, saliva, milk and blood were sampled simultaneously in each animal at least once a week for analysis. A total of 136 variables were screened by successive statistical approaches including: partial least squares-discriminant analysis, multivariate analysis and mixed-effect models. Finally, 16 indicators were selected as the most representative of a HSD challenge. A generalized linear mixed model analysis was applied to highlight parsimonious combinations of indicators able to identify animals under our experimental conditions. Eighteen models were established and the combination of milk urea nitrogen, blood bicarbonate and feed intake was the best to detect the different periods of the challenge with both 100% of specificity and sensitivity. Other indicators such as the number of drinking acts, fat:protein ratio in milk, urine, and faecal pH, were the most frequently used in the proposed models. Finally, the established models highlight the necessity for animals to have more than 1 week of recovery diet to return to their initial control state after a HSD challenge. This pilot study demonstrates the interest of using combinations of non-invasive indicators to monitor feed changes from a LSD to a HSD to dairy cows in order to improve prevention of rumen dysfunction on-farm. However, the adjustment and robustness of the proposed combinations of indicators need to be challenged using a greater number of animals as well as different acidogenic conditions before being applied on-farm.  相似文献   

8.
Feed withdrawal (FW) is a frequent issue in open outdoor feedlot systems, where unexpected circumstances can limit the animals’ access to food. The relationship among fasting period, animal behaviour during feed reintroduction (FR) and acidosis occurrence has not been completely elucidated. Twenty steers fitted with rumen catheters were fed a high-concentrate diet (concentrate : forage ratio 85 : 15) and were challenged by a protocol of FW followed by FR. The animals were randomly assigned to one of the four treatments: FW for 12 h (T12), 24 h (T24), 36 h (T36) or no FW (control group) followed by FR. The steers’ behaviour, ruminal chemistry, structure of the ruminal microbial community, blood enzymes and metabolites and ruminal acidosis status were assessed. Animal behaviour was affected by the FW–FR challenge ( P < 0.05). Steers from the T12, T24 and T36 treatments showed a higher ingestion rate and a lower frequency of rumination. Although all animals were suspected to have sub-acute ruminal acidosis (SARA) prior to treatment, a severe case of transient SARA arose after FR in the T12, T24 and T36 groups. The ruminal pH remained below the threshold adopted for SARA diagnosis ( pH value = 5.6) for more than three consecutive hours (24, 7 and 19 h in the T12, T24 and T36 treatments, respectively). The FW–FR challenge did not induce clinical acute ruminal acidosis even though steers from the T36 treatment presented ruminal pH values that were consistent with this metabolic disorder (pH threshold for acute acidosis = 5.2). Total mixed ration reintroduction after the withdrawal period reactivated ruminal fermentation as reflected by changes in the fermentation end-products. Ruminal lactic acid accumulation in steers from the T24 and T36 treatments probably led to the reduction of pH in these groups. Both the FW and the FR phases may have altered the structure of the ruminal microbiota community. Whereas fibrolytic bacterial groups decreased relative abundance in the restricted animals, both lactic acid producer and utiliser bacterial groups increased ( P < 0.05). The results demonstrated a synchronisation between Streptococcus (lactate producer) and Megasphaera (lactate utiliser), as the relative abundance of both groups increased, suggesting that bacterial resilience may be central for preventing the onset of metabolic disturbances such as ruminal acidosis. A long-FW period (36 h) produced rumen pH reductions well below and lactic acid concentration increased well above the accepted thresholds for acute acidosis without any perceptible clinical signs.  相似文献   

9.

Introduction

Thiamine is known to attenuate high-concentrate diet induced subacute ruminal acidosis (SARA) in dairy cows, however, the underlying mechanisms remain unclear.

Objectives

The major objective of this study was to investigate the metabolic mechanisms of thiamine supplementation on high-concentrate diet induced SARA.

Methods

Six multiparous, rumen-fistulated Holstein cows were used in a replicated 3?×?3 Latin square design. The treatments included a control diet (CON; 20% starch, dry matter basis), a SARA-inducing diet (SAID; 33.2% starch, dry matter basis) and SARA-inducing diet supplemented with 180 mg of thiamine/kg of dry matter intake (SAID?+?T). On d21 of each period, ruminal fluid samples were collected at 3 h post feeding, and GC/MS was used to analyze rumen fluid samples.

Results

PCA and OPLS-DA analysis demonstrated that the ruminal metabolite profile were different in three treatments. Compared with CON treatment, SAID feeding significantly decreased rumen pH, acetate, succinic acid, increased propionate, pyruvate, lactate, glycine and biogenic amines including spermidine and putrescine. Thiamine supplementation significantly decreased rumen content of propionate, pyruvate, lactate, glycine and spermidine; increase rumen pH, acetate and some medium-chain fatty acids. The enrichment analysis of different metabolites indicated that thiamine supplementation mainly affected carbohydrates, amino acids, pyruvate and thiamine metabolism compared with SAID treatment.

Conclusions

These findings revealed that thiamine supplementation could attenuate high-concentrate diet induced SARA by increasing pyruvate formate-lyase activity to promote pyruvate to generate acetyl-CoA and inhibit lactate generation. Besides, thiamine reduced biogenic amines to alleviate ruminal epithelial inflammatory response.
  相似文献   

10.
The correlation between rumen chemical and bacterial changes was investigated during a four periodical stepwise adaptation to a high-concentrate diet (concentrate level at 0%, 30%, 50% and 70% for diet I to IV, respectively) in goats. The results showed that ruminal pH decreased from 6.7 to 5.5 after switching from diet I to II, and was maintained at about 5.5 on diet III. Denaturing gradient gel electrophoresis results showed that the rumen bacterial community was relatively stable during the initial three feeding periods, except for the appearance of three bands when diet changed from I to II, suggesting that an appropriate concentrate level can promote the proliferation of some bacteria. After 12 days of feeding diet III, total volatile fatty acid (VFA) concentration and butyrate proportion decreased. At days 2 and 3 of feeding diet IV, ruminal pH declined sharply to 5.3 and 4.7, respectively, and total VFA concentration decreased further while lactic acid concentration increased markedly, suggesting a relation between lactic acid accumulation and ruminal pH decline. At the same time, many bacteria disappeared, including most fibrolytic-related bacteria while Streptococcus bovis and Prevotella-like species dominated. Interestingly, Succinivibrio dextrinosolvens-like species maintained throughout the experiment, suggesting its tolerance to low pH. In conclusion, rumen bacterial community was relatively stable feeding 0% to 50% concentrate diets, and it was observed that appropriate concentrate levels in the diet could increase the diversity of rumen bacteria. However, concentrate-rich diets caused lactic acid accumulation and low ruminal pH that caused the disappearance of most fibrolytic-related bacteria sensitive to low pH while S. bovis and genus Prevotella persisted.  相似文献   

11.
Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows’ diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.  相似文献   

12.
Characterizing ruminal parameters in the context of sampling routine and feed efficiency is fundamental to understand the efficiency of feed utilization in the bovine. Therefore, we evaluated microbial and volatile fatty acid (VFA) profiles, rumen papillae epithelial and stratum corneum thickness and rumen pH (RpH) and temperature (RT) in feedlot cattle. In all, 48 cattle (32 steers plus 16 bulls), fed a high moisture corn and haylage-based ration, underwent a productive performance test to determine residual feed intake (RFI) using feed intake, growth, BW and composition traits. Rumen fluid was collected, then RpH and RT logger were inserted 5.5±1 days before slaughter. At slaughter, the logger was recovered and rumen fluid and rumen tissue were sampled. The relative daily time spent in specific RpH and RT ranges were determined. Polynomial regression analysis was used to characterize RpH and RT circadian patterns. Animals were divided into efficient and inefficient groups based on RFI to compare productive performance and ruminal parameters. Efficient animals consumed 1.8 kg/day less dry matter than inefficient cattle (P⩽0.05) while achieving the same productive performance (P⩾0.10). Ruminal bacteria population was higher (P⩽0.05) (7.6×1011 v. 4.3×1011 copy number of 16S rRNA gene/ml rumen fluid) and methanogen population was lower (P⩽0.05) (2.3×109 v. 4.9×109 copy number of 16S rRNA gene/ml rumen fluid) in efficient compared with inefficient cattle at slaughter with no differences (P⩾0.10) between samples collected on-farm. No differences (P⩾0.10) in rumen fluid VFA were also observed between feed efficiency groups either on-farm or at slaughter. However, increased (P⩽0.05) acetate, and decreased (P⩽0.05) propionate, butyrate, valerate and caproate concentrations were observed at slaughter compared with on-farm. Efficient had increased (P⩽0.05) rumen epithelium thickness (136 v. 126 µm) compared with inefficient cattle. Efficient animals also spent 318% and 93.2% more time (P⩽0.05) in acidotic (4.14% v. 1.30%) (pH⩽5.6) and optimal (5.6<pH<6.0) (8.53% v. 4.42%) RpH range compared with inefficient cattle. The circadian patterns revealed lower (P⩽0.05) RpH and no differences (P⩾0.10) in RT pre-, during, and post-prandial periods in efficient compared with inefficient cattle. In essence, superior feed efficiency in cattle seems linked to rumen features consistent with improved efficiency of feed utilization. Microbial abundance, rumen epithelial histomorphology, and RpH, may serve as indicators for feed efficiency in cattle. The divergences of assessments made on-farm and at slaughter should be considered in the development of proxies for feed efficiency.  相似文献   

13.
Twenty ruminally cannulated beef heifers were fed a high corn grain diet in a randomized block design to determine the effect of three direct fed microbial (DFM) strains of Propionibacterium on ruminal fermentation, nutrient digestibility and methane (CH4) emissions. The heifers were blocked in five groups on the basis of BW and used in five 28-day periods. Dietary treatments included (1) Control and three strains of Propionibacterium (2) P169, (3) P5, and (4) P54. Strains were administered directly into the rumen at 5×109 CFU with 10 g of a maltodextrin carrier in a gel capsule; Control heifers received carrier only. All heifers were fed the basal diet (10 : 90 forage to concentrate, dry matter basis). Rumen contents were collected on days 15 and 18, ruminal pH was measured continuously between days 15 and 22, enteric CH4 emissions were measured between days 19 and 22 and diet digestibility was measured from days 25 to 28. Mean ruminal pH was 5.91 and was not affected by treatments. Similarly, duration of time that pH<5.8 and 5.6 was not affected by treatment. Likewise, total and major volatile fatty acid profiles were similar among all treatments. No effects were observed on dry matter intake and total tract digestibility of nutrients. Total enteric CH4 production (g/day) was not affected by Propionibacterium strains and averaged 139 g/day. Similarly, mean CH4 yield (g CH4/kg of dry matter intake) was similar for all the treatments. The relative abundance of total Propionibacteria in the rumen increased with administration of DFM and were greater 3 h post-dosing relative to Control, but returned to baseline levels before feeding. Populations of Propionibacterium P169 were higher at 3 and 9 h as compared with the levels at 0 h. In conclusion, moderate persistency of the inoculated strains within the ruminal microbiome and pre-existing high propionate production due to elevated levels of starch fermentation might have reduced the efficacy of Propionibacterium strains to increase molar proportion of propionate and subsequently reduce CH4 emissions.  相似文献   

14.
The aims of the experiment were to investigate the variation in ruminal fermentation, milk performance and milk fatty acid profile triggered by induced subacute ruminal acidosis (SARA); and to evaluate the ability of beet pulp (BP) as a replacement for ground maize in order to alleviate SARA. Eight Holstein-Friesian cows were fed four diets (total mixed rations) during four successive periods (each of 17 d): (1) without wheat (W0); (2) with 10% finely ground wheat (FGW) (W10); (3) with 20% FGW (W20); (4) with 20% FGW and 10% pelleted BP (BP10). Inducing SARA by diet W20 decreased the daily mean ruminal pH (6.37 vs. 5.94) and the minimum ruminal pH (5.99 vs. 5.41) from baseline to challenge period. Ruminal concentrations of total volatile fatty acid, propionate, butyrate, valerate and isovalerate increased with the W20 compared with the W0 and W10 treatments. The substitution of BP for maize increased the minimum ruminal pH and molar percentage of acetate and decreased the molar percentage of butyrate. The diets had no effect on dry matter intake (DMI) and milk yield, but the milk fat percentage and yield as well as the amount of fat-corrected milk was reduced in the W20 and BP10 treatments. The cows fed the W20 diet had greater milk concentrations of C11:0, C13:0, C15:0, C14:1, C16:1, C17:1, C18:2n6c, C20:3n6, total polyunsaturated fatty acids (FA) and total odd-chain FA, and lower concentrations of C18:0 and total saturated FA compared with the cows fed the W0 diet. Therefore, it can be concluded that changes in ruminal fermentation, milk fat concentration and fatty acid profile are highly related to SARA induced by feeding high FGW diets, and that the substitution of BP for maize could reduce the risk of SARA in dairy cows.  相似文献   

15.
Sub-acute ruminal acidosis (SARA) is sometimes observed along with reduced milk fat synthesis. Inconsistent responses may be explained by dietary fat levels. Twelve ruminally cannulated cows were used in a Latin square design investigating the timing of metabolic and milk fat changes during Induction and Recovery from SARA by altering starch levels in low-fat diets. Treatments were (1) SARA Induction, (2) Recovery and (3) Control. Sub-acute ruminal acidosis was induced by feeding a diet containing 29.4% starch, 24.0% NDF and 2.8% fatty acids (FAs), whereas the Recovery and Control diets contained 19.9% starch, 31.0% NDF and 2.6% FA. Relative to Control, DM intake (DMI) and milk yield were higher in SARA from days 14 to 21 and from days 10 to 21, respectively (P < 0.05). Milk fat content was reduced from days 3 to 14 in SARA (P < 0.05) compared with Control, while greater protein and lactose contents were observed from days 14 to 21 and 3 to 21, respectively (P < 0.05). Milk fat yield was reduced by SARA on day 3 (P < 0.05), whereas both protein and lactose yields were higher on days 14 and 21 (P < 0.05). The ruminal acetate-to-propionate ratio was lower, and the concentrations of propionate and lactate were higher in the SARA treatment compared with Control on day 21 (P < 0.05). Plasma insulin increased during SARA, whereas plasma non-esterified fatty acids and milk β-hydroxybutyrate decreased (P < 0.05). Similarly to fat yield, the yield of milk preformed FA (>16C) was lower on day 3 (P < 0.05) and tended to be lower on day 7 in SARA cows (P < 0.10), whereas yield of de novo FA (<16C) was higher on day 21 (P < 0.01) in the SARA group relative to Control. The t10- to t11-18:1 ratio increased during the SARA Induction period (P < 0.05), but the concentration of t10-18:1 remained below 0.5% of milk fat, and t10,c12 conjugated linoleic acid remained below detection levels. Odd-chain FA increased, whereas branched-chain FA was reduced during SARA Induction from days 3 to 21 (P < 0.05). Sub-acute ruminal acidosis reduced milk fat synthesis transiently. Such reduction was not associated with ruminal biohydrogenation intermediates but rather with a transient reduction in supply of preformed FA. Subsequent rescue of milk fat synthesis may be associated with higher availability of substrates due to increased DMI during SARA.  相似文献   

16.
Medium-chain fatty acids (MCFAs) have antimicrobial properties and cause negative or positive effects on animal performance depending on its dosage. We hypothesized that MCFA supplementation at a lower dose (i.e., 0.05–0.2% of dietary DM) would increase rumen pH and milk production without decreasing nutrient digestibility which is typically observed with the higher inclusion rates (i.e., >1% of dietary DM). The objective of this study was to evaluate the effects of MCFA supplementation at a lower dose on productivity, plasma energy metabolite concentrations, apparent total tract nutrient digestibility, rumen fermentation, and rumen microbial profile of lactating dairy cows. Thirty (n = 8 primiparous, n = 22 multiparous) Holstein cows in mid-lactation (637 ± 68.5 kg of initial BW, 98.5 ± 27.4 d in milk; mean ± standard deviation) were used in a crossover design with two 28-d periods. The MCFA supplement, consisted of 25% MCFA (containing 32% C8:0, 21% C10:0, 47% C12:0 on DM basis) and 75% carrier ingredients, was fed at 0.25% of dietary DM replacing dry ground corn in control (CON). Total inclusion of MCFA was 0.063% of dietary DM. No differences were observed in DM intake, apparent total tract nutrient digestibility and BW change between MCFA and CON. Milk and milk component yields did not differ between treatment groups. The MCFA supplementation tended to have higher minimum rumen pH (5.66 vs. 5.54), and decreased daily fluctuation range of rumen pH (1.17 vs. 1.40) compared to CON. However, the duration of acidosis (pH < 5.8, min/d) did not differ between treatment groups and ruminal total volatile fatty acid concentration and its profile did not differ between treatment groups. For rumen microbiota, the Chao1 index of bacterial community tended to be lower (10.9 vs. 11.6) whereas the Shannon index did not differ (0.91 vs. 0.93) in MCFA compared to CON, and both indices did not differ for archaeal and protozoan communities between treatment groups. The relative abundance of Methanobrevibacter gottschalkii increased when supplemented with MCFA (5.14 vs. 4.92%). These results suggest that supplementation of MCFA at 0.063% dietary DM may not affect overall animal performance or total tract nutrient digestibility, but decrease the daily range of pH and the bacterial richness in the rumen.  相似文献   

17.
In this study, we used two different grain-rich feeding models (continuous or transient) to determine their effects on in situ fiber degradation and abundances of important rumen fibrolytic microbes in the rumen. The role of the magnitude of ruminal pH drop during grain feeding in the fiber degradation was also determined. The study was performed in eight rumen-fistulated dry cows. They were fed forage-only diet (baseline), and then challenged with a 60% concentrate diet for 4 weeks, either continuously (n=4 cows) or transiently (n=4 cows). The cows of transient feeding had 1 week off concentrate in between. Ruminal degradation of grass silage and fiber-rich hay was determined by the in situ technique, and microbial abundances attached to incubated samples were analyzed by quantitative PCR. The in situ trials were performed at the baseline and in the 1st and the last week of concentrate feeding in the continuous model. The in situ trials were done in cows of the transient model at the baseline and in the 1st week of the re-challenge with concentrate. In situ degradation of NDF and ADF of the forage samples, and microbial abundances were determined at 0, 4, 8, 24 and 48 h of the incubation. Ruminal pH and temperature during the incubation were recorded using indwelling pH sensors. Compared with the respective baseline, both grain-rich feeding models lowered ruminal pH and increased the duration of pH below 5.5 and 5.8. Results of the grass silage incubation showed that in the continuous model the extent of NDF and ADF degradation was lower in the 1st, but not in the last week compared with the baseline. For the transient model, degradation of NDF of the silage was lower during the re-challenge compared with the baseline. Degradation of NDF and ADF of the hay was suppressed by both feeding models compared with the respective baseline. Changes in fiber degradation of either grass silage or hay were not related to the magnitude of ruminal pH depression during grain-rich feeding. In both feeding models total fungal numbers and relative abundance of Butyrivibrio fibrisolvens attached to the incubated forages were decreased by the challenge. Overall, Fibrobacter succinogenes was more sensitive to the grain challenge compared with Ruminococcus albus and Ruminococcus flavefaciens. The study provided evidence for a restored ruminal fiber degradation after prolonged time of grain-rich feeding, however depending on physical and chemical characteristics of forages.  相似文献   

18.
A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis.  相似文献   

19.
The relative contribution of ruminal short-chain fatty acid (SCFA) absorption and salivary buffering to pH regulation could potentially change under different dietary conditions. Therefore, the objective of this study was to investigate the effects of altering the ruminal supply of rapidly fermentable carbohydrate (CHO) on absorptive function and salivation in beef cattle. Eight heifers (mean BW±SD=410±14 kg) were randomly allocated to two treatments in a crossover design with 37-day periods. Dietary treatments were barley silage at 30% low forage (LF) or 70% high forage (HF) of dietary dry matter (DM), with the remainder of the diet consisting of barley grain (65% or 25% on a DM basis) and a constant level (5%) of supplement. The LF and HF diets contained 45.3% and 30.9% starch, and 4.1% and 14.0% physically effective fiber (DM basis), respectively. Ruminal pH was continuously measured from day 17 to day 23, whereas ruminal fluid was collected on day 23 to determine SCFA concentration. Ruminal liquid passage rate was determined on day 23 using Cr-ethylenediaminetetraacetic acid. Eating or resting salivation was measured by collecting masticate (days 28 and 29) or saliva samples (days 30 and 31) at the cardia, respectively. On days 30 and 31, the temporarily isolated and washed reticulo-rumen technique was used to measure total, and Cl-competitive (an indirect measure of protein-mediated transport) absorption of acetate, propionate and butyrate. As a result of the higher dietary starch content and DM intake, the ruminal supply of rapidly fermentable CHO, total ruminal SCFA concentration (118 v. 95 mM; P<0.001) and osmolality (330 v. 306 mOsm/kg; P=0.018) were greater in cattle fed LF compared with HF. In addition, feeding LF resulted in a longer duration (2.50 v. 0.09 h/day; P=0.02) and a larger area (0.44 v. 0.01 (pH×h)/day; P=0.050) that pH was below 5.5. There was no diet effect on total and Cl-competitive absorption (mmol/h and %/h) of acetate, propionate, butyrate and total SCFA (acetate+propionate+butyrate), but eating salivation was less (131 v. 152 ml/min; P=0.02), and resting salivation tended to be less (87 v. 104 ml/min; P=0.10) in cattle fed an LF diet. In summary, lower ruminal pH in cattle with greater rapidly fermentable CHO intake was attributed to an increase in SCFA production and decrease in salivation, which were not compensated for by an increase in epithelial permeability.  相似文献   

20.
Garlic (Allium sativum L.) and its constituents have been shown to modify rumen fermentation and improve growth performance. Garlic skin, a by-product of garlic processing, contains similar bioactive components as garlic bulb. This study aimed to investigate the effects of garlic skin supplementation on growth performance, ruminal microbes, and metabolites in ruminants. Twelve Hu lambs were randomly assigned to receive a basal diet (CON) or a basal diet supplemented with 80 g/kg DM of garlic skin (GAS). The experiment lasted for 10 weeks, with the first 2 weeks serving as the adaptation period. The results revealed that the average daily gain and volatile fatty acid concentration were higher (P < 0.05) in lambs fed GAS than those in the CON group. Garlic skin supplementation did not significantly (P > 0.10) affect the α-diversity indices, including the Chao1 index, the abundance-based coverage estimator value, and the Shannon and Simpson indices. At the genus level, garlic skin supplementation altered the ruminal bacterial composition by increasing (P < 0.05) the relative abundances of Prevotella, Bulleidia, Howardella, and Methanosphaera and decreasing (P < 0.05) the abundance of Fretibacterium. Concentrations of 139 metabolites significantly differed (P < 0.05) between the GAS and the CON groups. Among them, substrates for rumen microbial protein synthesis were enriched in the GAS group. The pathways of pyrimidine metabolism, purine metabolism, and vitamin B6 metabolism were influenced (P < 0.05) by garlic skin supplementation. Integrated correlation analysis also provided a link between the significantly altered rumen microbiota and metabolites. Thus, supplementation of garlic skin improved the growth performance of lambs by modifying rumen fermentation through shifts in the rumen microbiome and metabolome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号