首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2   总被引:3,自引:1,他引:2  
The ends of linear chromosomes are capped by protein–DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.  相似文献   

3.
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.  相似文献   

4.
5.
Telomeres are specialized structures at the ends of the chromosomes that, with the help of proteins--such as the telomere repeat-binding factor TRF2 -, form protective caps which are essential for chromosomal integrity. Investigating the structure and three-dimensional (3D) distribution of the telomeres and TRF2 in the nucleus, we now show that the telomeres of the immortal HaCaT keratinocytes are distributed in distinct non-overlapping territories within the inner third of the nuclear space in interphase cells, while they extend more widely during mitosis. TRF2 is present at the telomeres at all cell cycle phases. During mitosis additional TRF2 protein concentrates all around the chromosomes. This change in staining pattern correlates with a significant increase in TRF2 protein at the S/G2 transition as seen in Western blots of synchronized cells and is paralleled by a cell cycle-dependent regulation of TRF2 mRNA, arguing for a specific role of TRF2 during mitosis. The distinct territorial localization of telomeres is abrogated in a HaCaT variant that constitutively expresses c-Myc--a protein known to contribute to genomic instability. These cells are characterized by overlapping telomere territories, telomeric aggregates (TAs), that are accompanied by an overall irregular telomere distribution and a reduced level in TRF2 protein. These TAs which are readily detectable in interphase nuclei, are similarly present in mitotic cells, including cells in telophase. Thus, we propose that TAs, which subsequently also cluster their respective chromosomes, contribute to genomic instability by forcing an abnormal chromosome segregation during mitosis.  相似文献   

6.
目的:运用小干扰RNA下调果蝇zeste 基因增强子人类同源物(enhancer of zeste homolog 2,EZH2)在肾癌细胞系769-P 中 的表达,明确其对肾癌细胞增殖的影响。方法:将处于对数生长期769-P 细胞分为实验组(experiment group)、阴性对照组(negative group)、空白对照组(blank group),合成靶向EZH2 基因的小干扰RNA片段(EZH2-siRNA)和无效序列片段后,通过脂质体介导分 别转染至实理组和阴性对照组,空白对照组未做任何处理。以qRealtime-PCR 检测EZH2 基因mRNA 水平的变化情况,以MTT 法检测各组细胞增殖变化;流式细胞术(FCM)检测转染后细胞周期变化情况。结果:实理组中EZH2 在mRNA 表达水平明显受 抑制;MTT实验中第4 天始,实验组中769-P 细胞的增殖能力开始受抑制,第5 天时实验组细胞抑制更明显,与阴性对照组和空 白组比较差异有统计学意义(P < 0.05)。siRNA 转染后实验组中G0/G1 期细胞比例明显增多(81.32± 3.14)%,与阴性对照组 (44.13± 1.52)%和空白对照组(45.71± 2.32)%差异有统计学意义。结论:EZH2-siRNA 可有效下调并抑制肾癌细胞769-P的增殖, EZH2在肾癌的发生、发展中发挥了重要作用,为下一步研究肾癌基因治疗提供了理论支持。  相似文献   

7.
Human telomeres contain two related telomeric DNA-binding proteins, TRF1 and TRF2. The TRF1 complex contains the TRF1 interacting partner, TIN2, as well as PIP1 and POT1 and regulates telomere-length homeostasis. The TRF2 complex is primarily involved in telomere protection and contains the TRF2 interacting partner human (h)Rap1 as well as several factors involved in the DNA damage response. A prior report showed that conditional deletion of murine TRF1 reduced the presence of TRF2 on telomeres. Here we showed that TRF2 is also lost from human telomeres upon TRF1 depletion with small interfering RNA prompting a search for the connection between the TRF1 and TRF2 complexes. Using mass spectrometry and co-immunoprecipitation, we found that TRF1, TIN2, PIP1, and POT1 are associated with the TRF2-hRap1 complex. Gel filtration identified a TRF2 complex containing TIN2 and POT1 but not TRF1 indicating that TRF1 is not required for this interaction. Co-immunoprecipitation, Far-Western assays, and two-hybrid assays showed that TIN2, but not POT1 or PIP1, interacts directly with TRF2. Furthermore, TIN2 was found to bind TRF1 and TRF2 simultaneously, showing that TIN2 can link these telomeric proteins. This connection appeared to stabilize TRF2 on the telomeres as the treatment of cells with TIN2 small interfering RNA resulted in a decreased presence of TRF2 and hRap1 at chromosome ends. The TIN2-mediated cooperative binding of TRF1 and TRF2 to telomeres has important implications for the mechanism of telomere length regulation and protection.  相似文献   

8.
Alternative lengthening of telomere (ALT) tumors maintain telomeres by a telomerase-independent mechanism and are characterized by a nuclear structure called the ALT-associated PML body (APB). TRF2 is a component of a telomeric DNA/protein complex called shelterin. However, TRF2 function in ALT cells remains elusive. In telomerase-positive tumor cells, TRF2 inactivation results in telomere de-protection, activation of ATM, and consequent induction of p53-dependent apoptosis. We show that in ALT cells this sequence of events is different. First, TRF2 inactivation/silencing does not induce cell death in p53-proficient ALT cells, but rather triggers cellular senescence. Second, ATM is constitutively activated in ALT cells and colocalizes with TRF2 into APBs. However, it is only following TRF2 silencing that the ATM target p53 is activated. In this context, PML is indispensable for p53-dependent p21 induction. Finally, we find a substantial loss of telomeric DNA upon stable TRF2 knockdown in ALT cells. Overall, we provide insight into the functional consequences of shelterin alterations in ALT cells.  相似文献   

9.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

10.
Importance of TRF1 for functional telomere structure   总被引:10,自引:0,他引:10  
Telomeres are comprised of telomeric DNA sequences and associated binding molecules. Their structure functions to protect the ends of linear chromosomes and ensure chromosomal stability. One of the mammalian telomere-binding factors, TRF1, localizes telomeres by binding to double-stranded telomeric DNA arrays. Because the overexpression of wild-type and dominant-negative TRF1 induces progressive telomere shortening and elongation in human cells, respectively, a proposed major role of TRF1 is that of a negative regulator of telomere length. Here we report another crucial function of TRF1 in telomeres. In conditional mouse TRF1 null mutant embryonic stem cells, TRF1 deletion induced growth defect and chromosomal instability. Although no clear telomere shortening or elongation was observed in short term cultured TRF1-deficient cells, abnormal telomere signals were observed, and TRF1-interacting telomere-binding factor, TIN2, lost telomeric association. Furthermore, another double-stranded telomeric DNA-binding factor, TRF2, also showed decreased telomeric association. Importantly, end-to-end fusions with detectable telomere signals at fusion points accumulated in TRF1-deficient cells. These results strongly suggest that TRF1 interacts with other telomere-binding molecules and integrates into the functional telomere structure.  相似文献   

11.
12.
目的:运用小干扰RNA下调果蝇zeste基因增强子人类同源物(enhancer ofzeste homolog 2,EZH2)在肾癌细胞系769-P中的表达,明确其对肾癌细胞增殖的影响。方法:将处于对数生长期769-P细胞分为实验组(experiment group)、阴性对照组(negative group)、空白对照组(blank group),合成靶向EZH2基因的小干扰RNA片段(EZH2-siRNA)和无效序列片段后,通过脂质体介导分别转染至实理组和阴性对照组,空白对照组未做任何处理。以qRealtime-PCR检测EZH2基因mRNA水平的变化情况,以MTT法检测各组细胞增殖变化;流式细胞术(FCM)检测转染后细胞周期变化情况。结果:实理组中EZH2在mRNA表达水平明显受抑制;MTT实验中第4天始,实验组中769-P细胞的增殖能力开始受抑制,第5天时实验组细胞抑制更明显,与阴性对照组和空白组比较差异有统计学意义(P〈0.05)。siRNA转染后实验组中G0/G1期细胞比例明显增多(81.32±3.14)%,与阴性对照组(44.13±1.52)%和空白对照组(45.71±2.32)%差异有统计学意义。结论:EZH2-siRNA可有效下调并抑制肾癌细胞769-P的增殖,EZH2在肾癌的发生、发展中发挥了重要作用,为下一步研究肾癌基因治疗提供了理论支持。  相似文献   

13.
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.  相似文献   

14.
Epstein-Barr virus OriP confers cell cycle-dependent DNA replication and stable maintenance on plasmids in EBNA1-positive cells. The dyad symmetry region of OriP contains four EBNA1 binding sites that are punctuated by 9-bp repeats referred to as nonamers. Previous work has shown that the nonamers bind to cellular factors associated with human telomeres and contribute to episomal maintenance of OriP. In this work, we show that substitution mutation of all three nonamer sites reduces both DNA replication and plasmid maintenance of OriP-containing plasmids by 2.5- to 5-fold. The nonamers were required for high-affinity binding of TRF1, TRF2, and hRap1 to the dyad symmetry element but were not essential for the binding of EBNA1 as determined by DNA affinity purification from nuclear extracts. Chromatin immunoprecipitation assays indicated that TRF1, TRF2, and hRap1 bound OriP in vivo. Cell cycle studies indicate that TRF2 binding to OriP peaks in G1/S while TRF1 binding peaks in G2/M. OriP replication was inhibited by transfection of full-length TRF1 but not by deletion mutants lacking the myb DNA binding domain. In contrast, OriP replication was not affected by transfection of full-length TRF2 or hRap1 but was potently inhibited by dominant-negative TRF2 or hRap1 amino-terminal truncation mutants. Knockdown experiments with short interfering RNAs (siRNAs) directed against TRF2 and hRap1 severely reduced OriP replication, while TRF1 siRNA had a modest stimulatory effect on OriP replication. These results indicate that TRF2 and hRap1 promote, while TRF1 antagonizes, OriP-dependent DNA replication and suggest that these telomeric factors contribute to the establishment of replication competence at OriP.  相似文献   

15.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   

16.
NIMA-related kinase 2 (Nek2), a serine–threonine protein kinase, plays a major role in mitotic progression, including timing of mitotic entry, chromatin condensation, spindle organization, and cytokinesis. Nek2 overexpression results in premature centrosome separation, while kinase death Nek2 mutant expression or Nek2-depleted cells lead to centrosome separation failure. In addition, it has been revealed that telomeric repeat binding factor 1 (TRF1) interacts directly with Nek2. TRF1 not only regulates telomere length, but is also associated with cell cycle regulation. However, the interactions and correlations between Nek2 and TRF1 are far from clear. Here, we show that mitotic aberrations through Nek2 overexpression are likely to require TRF1. Our results demonstrate that Nek2 directly binds and phosphorylates TRF1 through multiple sites on TRF1. Nek2 overexpression in breast cancer cells, MDA-MB-231 and MCF7, results in increased numbers of centrosomes and multinucleated cells, which leads to cytokinetic failure and aneuploidization. Additionally, TRF1 depletion by siRNA prevents the phenomenon of unaligned chromosomes by Nek2 overexpression during metaphase. Concurrent Nek2 overexpression and TRF1-depleted cells demonstrated ≤ 2 centrosomes per cell, similar to mock plasmid and negative control siRNA-transfected cells. Interestingly, when exogenous TRF1 was added back in Nek2-overexpressed cells with endogenous TRF1 depletion, cells had re-induced cytokinetic failure. Therefore, we propose that TRF1 is required for overexpressed Nek2 to trigger abnormal mitosis and chromosomal instability.  相似文献   

17.
18.
The shelterin complex protects telomeres by preventing them from being degraded and recognized as double‐strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1‐year‐old) and old (2‐year‐old) mice using gene therapy can delay age‐associated pathologies. To this end, we used the nonintegrative adeno‐associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9‐TRF1 gene therapy significantly prevented age‐related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9‐TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere‐associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9‐TRF1 gene therapy results in an improved mouse health span.  相似文献   

19.
目的研究转染细胞周期依赖性蛋白激酶1(cyclin.dependent kinase1,CDK1)siRNA、以及转染后进行凋亡刺激对细胞周期和凋亡的影响,探讨CDK1在细胞凋亡中的确切作用,揭示细胞周期与细胞凋亡协调的分子机制。方法以人宫颈癌细胞株HeLa细胞为研究对象,脂质体转染CDK1siRNA,转染后48h加紫杉醇(Tax01)(20μg/m1)刺激凋亡,Western印迹检测CDK1和抗凋亡蛋白BCL2表达,AnnexinV/PI法检测细胞的凋亡,流式细胞仪分析DNA含量检测细胞周期。结果转染CDK1 siRNA后,CDK1蛋白的表达下降,细胞周期G2/M期比例增加,细胞凋亡率与对照相比没有明显升高。只加Taxol刺激12h后细胞凋亡率增加并伴有S期和G2/M期比例增加。转染CDKlsiRNA后再用Taxol刺激,其细胞凋亡率没有明显改变,G2/M期阻滞效应也没有叠加。BCL2蛋白只在加Taxol刺激组表达下降,与CDK1表达减少没有相关性。结论siRNA沉默导致的CDK1表达降低只导致细胞周期G2/M期阻滞,没有引起细胞凋亡;CDK1的表达降低对紫杉醇所诱导的细胞周期阻滞和细胞凋亡效应没有明显影响。  相似文献   

20.
The DNA damage-dependent poly(ADP-ribose) polymerase-2 (PARP-2) is, together with PARP-1, an active player of the base excision repair process, thus defining its key role in genome surveillance and protection. Telomeres are specialized DNA-protein structures that protect chromosome ends from being recognized and processed as DNA strand breaks. In mammals, telomere protection depends on the T(2)AG(3) repeat binding protein TRF2, which has been shown to remodel telomeres into large duplex loops (t-loops). In this work we show that PARP-2 physically binds to TRF2 with high affinity. The association of both proteins requires the N-terminal domain of PARP-2 and the myb domain of TRF2. Both partners colocalize at promyelocytic leukemia bodies in immortalized telomerase-negative cells. In addition, our data show that PARP activity regulates the DNA binding activity of TRF2 via both a covalent heteromodification of the dimerization domain of TRF2 and a noncovalent binding of poly(ADP-ribose) to the myb domain of TRF2. PARP-2(-/-) primary cells show normal telomere length as well as normal telomerase activity compared to wild-type cells but display a spontaneously increased frequency of chromosome and chromatid breaks and of ends lacking detectable T(2)AG(3) repeats. Altogether, these results suggest a functional role of PARP-2 activity in the maintenance of telomere integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号