首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.  相似文献   

2.
3.
Cryptococcus neoformans has become a common central nervous system pathogen as the immunocompromised populations enlarge world-wide. This encapsulated yeast has significant advantages for the study of fungal pathogenesis and these include: (1) a clinically important human pathogen; (2) a tractable genetic system; (3) advanced molecular biology foundation; (4) understanding of several virulence phenotypes; (5) well-studied pathophysiology; and (6) robust animal models. With the use of a sequenced genome and site-directed mutagenesis to produce specific null mutants, the virulence composite of C. neoformans has begun to be identified one gene at a time. Studies into capsule production, melanin synthesis, high temperature growth, metabolic pathways and a variety of signaling pathways have led to understandings of what makes this yeast a pathogen at the molecular level. Multiple principles of molecular pathogenesis have been demonstrated in virulence studies with C. neoformans. These include evolutionary differences between the varieties of C. neoformans in their genes for virulence, quantitative impact of genes on the virulence composite, species and site-specific importance of a virulence gene, gene expression correlation with its functional importance or phenotype and the impact of a pathogenesis gene on the host immune response. C. neoformans has now become a primary model to study molecular fungal pathogenesis with the goal of identifying drug targets or vaccine strategies.  相似文献   

4.
Cryptococcus neoformans I. Nonencapsulated Mutants   总被引:31,自引:6,他引:25       下载免费PDF全文
Seven nonencapsulated mutants of Cryptococcus neoformans were isolated from an encapsulated strain of human origin. Initially, the mutants were avirulent for mice. After several months of subculturing, six of the seven isolates reverted to the encapsulated state and possessed varying degrees of virulence. The results of these experiments suggest that a strong correlation exists between the presence of a capsule and the virulence of C. neoformans.  相似文献   

5.
In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi.  相似文献   

6.
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.  相似文献   

7.
The uses of genome-wide yeast mutant collections   总被引:1,自引:0,他引:1  
We assess five years of usage of the major genome-wide collections of mutants from Saccharomyces cerevisiae: single deletion mutants, double mutants conferring 'synthetic' lethality and the 'TRIPLES' collection of mutants obtained by random transposon insertion. Over 100 experimental conditions have been tested and more than 5,000 novel phenotypic traits have been assigned to yeast genes using these collections.  相似文献   

8.
Cryptococcus neoformans is a human opportunistic fungal pathogen responsible for ∼1/3 of HIV/AIDS deaths worldwide. This budding yeast expresses a polysaccharide capsule necessary for virulence. Capsule production inhibits phagocytosis by macrophages. Here we describe results that link copper homeostasis to capsule production and the inhibition of phagocytosis. Specifically, using Agrobacterium-mediated insertional mutagenesis, we identified an insertion in the promoter region of the putative copper transporter-encoding gene CTR2 that results in reduced expression of CTR2 and increased phagocytosis by murine RAW264.7 macrophages. The mutant also displayed sensitivity to copper starvation and defects in polysaccharide capsule production and melanization. These defects were all reversed by genetic correction of the promoter insertion by homologous targeting. Several melanization-defective mutants identified previously, those in the RIM20, RIM101, and VPS25 genes, also display sensitivity to copper starvation, reduced capsule production and increased phagocytosis. Together these results indicate a previously undescribed link between copper homeostasis to polysaccharide capsule production and phagocytosis inhibition in Cryptococcus neoformans.  相似文献   

9.
The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MAT a alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MAT a locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MAT a locus appear to have a higher number of changes and substitutions than their MATα counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes linked to the MAT locus of C. neoformans showed a higher number of chromosomal translocations in the genome of F. depauperata. We therefore propose that chromosomal rearrangements appear to be a major force driving speciation and sexual divergence in these closely related pathogenic and saprobic species.  相似文献   

10.
It is becoming increasingly obvious that glycophosphatidylinositol (GPI)-anchored proteins (GAPs) play a prominent role in fungi, a full understanding of GAPs is however lacking especially for the human opportunistic fungus Cryptococcus neoformans. Using online GPI prediction tools, GAPs were identified and subsequently a mutant library for these GAP-encoding genes was developed and a publicly available knock out (KO) mutant library was used. In total, 41 overexpression and 34 KO mutants, representing 47 unique genes, were analyzed. From the analysis of the two libraries, two main gene candidates, a mannoprotein 88 (MP88) (CNAG_00776) and an uncharacterized protein (CNAG_00137) were further investigated by constructing additional independent mutant strains. The CNAG_00776 mutant showed an impaired growth upon plasma membrane stress and significant decreased phagocytosis. The CNAG_00137 mutant showed impaired growth during cell wall stress or increased temperature and significant decreased phagocytosis. By performing a large genetic screen of GAPs in the genome of the human fungal pathogen C. neoformans, we identified two candidate GAP genes involved in C. neoformans/host interaction and stress response. Further research into these two genes could potentially result in new targets for antfungals, treatment strategies or vaccines to manage C. neoformans disease.  相似文献   

11.
Cryptococcus neoformans, a model pathogenic fungus, exemplifies the application of several genome-wide approaches to investigate fungal pathogenicity. This review focuses on the application of genome-wide approaches to large populations of clinical and environmental isolates rather than to a small number of well-defined laboratory strains. Specific examples include the construction and utilization of genetic linkage maps, analyses of quantitative trait genes and loci, and the use of genome-wide genetic markers in population studies.  相似文献   

12.
13.
Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.  相似文献   

14.
15.
Cyclophilin A is the target of the immunosuppressant cyclosporin A (CsA) and is encoded by a single unique gene conserved from yeast to humans. In the pathogenic fungus Cryptococcus neoformans, two homologous linked genes, CPA1 and CPA2, were found to encode two conserved cyclophilin A proteins. In contrast to Saccharomyces cerevisiae, in which cyclophilin A mutations confer CsA resistance but few other phenotypes, cyclophilin A mutations conferred dramatic phenotypes in C. neoformans. The Cpa1 and Cpa2 cyclophilin A proteins play a shared role in cell growth, mating, virulence and CsA toxicity. The Cpa1 and Cpa2 proteins also have divergent functions. cpa1 mutants are inviable at 39°C and attenuated for virulence, whereas cpa2 mutants are viable at 39°C and fully virulent. cpa1 cpa2 double mutants exhibited synthetic defects in growth and virulence. Cyclophilin A active site mutants restored growth of cpa1 cpa2 mutants at ambient but not at higher temperatures, suggesting that the prolyl isomerase activity of cyclophilin A has an in vivo function.  相似文献   

16.
Just as Koch’s postulates formed the foundation of early infectious disease study, Stanley Falkow’s molecular Koch’s postulates define best practice in determining whether a specific gene contributes to virulence of a pathogen. Fundamentally, these molecular postulates state that if a gene is involved in virulence, its removal will compromise virulence. Likewise, its reintroduction should restore virulence to the mutant. These approaches are widely employed in Cryptococcus neoformans, where gene deletion via biolistic transformation is a well-established technique. However, the complementation of these mutants is less straightforward. Currently, one of three approaches will be taken: the gene is reintroduced at the original locus, the gene is reintroduced into a random site in the genome, or the mutant is not complemented at all. Depending on which approach is utilized, the mutant may be complemented but other genes are potentially disrupted in the process. To counter the drawbacks of the current approaches to complementation we have created a new tool to assist in this key step in the study of a gene’s role in virulence. We have identified and characterized a small gene-free region in the C. neoformans genome dubbed the “safe haven”, and constructed a plasmid vector that targets DNA constructs to this preselected site. The plasmid vector integrates with high frequency, effectively complementing a mutant strain without disrupting adjacent genes. qRT-PCR of the flanking genes on either side of the safe haven site following integration of the targeting vector revealed no changes in their expression, and no secondary phenotypes were observed in a range of phenotypic assays including an intranasal murine infection model. Combined, these data confirm that we have successfully created a much-needed molecular resource for the Cryptococcus community, enabling the reliable fulfillment of the molecular Koch’s postulates.  相似文献   

17.
The pathogenic fungus Cryptococcus neoformans exhibits a striking propensity to cause central nervous system (CNS) disease in people with HIV/AIDS. Given that cryptococcal infections are generally initiated by pulmonary colonization, dissemination requires that the fungus withstand phagocytic killing, cross the alveolar–capillary interface in the lung, survive in the circulatory system and breach the blood–brain barrier. We know little about the molecular mechanisms underlying dissemination, but there is a rapidly growing list of mutants that fail to cause CNS disease. These mutants reveal a remarkable diversity of functions and therefore illustrate the complexity of the cryptococcal–host interaction. The challenge now is to extend the analysis of these mutants to acquire a detailed understanding of each step in dissemination.  相似文献   

18.
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications.  相似文献   

19.
With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter—ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing (‘forward genomics’) demonstrates a strategy that could similarly enable rapid screens in many other microbes.  相似文献   

20.
The efficiency of gene targeting by integration through homologous recombination (homologous integration, HI) in the human pathogen Cryptococcus neoformans remains unsatisfactory. In order to achieve a much more efficient gene targeting system in C. neoformans, a new double knockout strain in genes involved in the non-homologous end joining (NHEJ) pathway was constructed. HI frequency was elevated by as much as approximately fivefold in the single or double knockout strains in NHEJ genes, and the frequency depended on the gene targeted. None of the NHEJ gene knockouts showed significant differences in regular growth, sensitivity to DNA-damaging drugs or UV, and virulence compared to the wild-type control, suggesting that the NHEJ pathway does not play a significant role in these biological stresses in C. neoformans. It was also suggested that the genes analyzed in this study are components of a single NHEJ pathway, as the mutants (including the double mutant) displayed the same phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号