首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile salt hydrolase (BSH), the enzyme deconjugating bile potentially plays an important role in reduction of blood cholesterol level. BSH enzymes from various sources differ in characteristics, substrates preference and specific catalytic activity. In this study, two BSH enzymes (BSH1 and BSH2) from Lactobacillus salivarius were heterologously expressed and purified. Both of them were characterized as homotetramer according to their molecular weight from size exclusion chromatograph. BSH1 showed a broad pH optimum over the range from 5.5 to 7.0, while a narrower range of pH optimum from 5.5 to 6.0 for BSH2 was detected. The enzymatic kinetics of the purified BSH1 and BSH2 have demonstrated BSH enzymes from bacteria were allosteric enzymes, and have also revealed their striking differences in positive cooperativity, catalytic efficiency and substrate preference for the first time. In contrast to the enzymatic reactions of BSH in the absence of dithiothreitol, the kinetics curves of BSH1 and BSH2 were similar to hyperbolic forms of Michaelis–Menten kinetics in the presence of dithiothreitol.  相似文献   

2.

Aims

To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01.

Methods and Results

The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l?1 isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel–nitrilotriacetic acid (Ni2+‐NTA) agarose column and their activities characterized. BSH A hydrolysed tauro‐conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco‐conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety.

Conclusions

BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate‐binding sites, these remain functional through motif conservation.

Significance and Impact of the Study

This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco‐conjugated or tauro‐conjugated bile salts. Future structural homology studies and site‐directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes.  相似文献   

3.
Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (kcat/Km) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals.  相似文献   

4.
为了解析胆盐水解酶催化中心中关键氨基酸位点与其底物特异性的关系,以大肠杆菌pET-20b(+)表达系统为分子改造平台,采用理性设计,结合氨基酸定点突变的方法,成功构建了唾液乳杆菌Lactobacillus salivarius胆盐水解酶BSH1的7种突变体。通过对比L.salivarius BSH1及其突变体对6种结合胆盐的底物特异性表明,7种突变体对不同的结合胆盐的水解活性有所改变。结果说明,Cys2和Thr264分别是BSH1催化TCA和GCA的关键残基,且对酶的催化活性的保持具有关键作用。其中,高保守性的氨基酸位点Cys2不是BSH1唯一的活性位点,而其他突变的氨基酸位点可能作为BSH1的结合位点参与了底物的结合,也可能影响了底物进入BSH1活性中心的通道或底物结合口袋的体积与形状,进而影响了BSH1对不同结合胆盐的水解活性。  相似文献   

5.

Objectives

Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism.

Results

The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2.

Conclusions

Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
  相似文献   

6.
7.
Bacteria of numerous species isolated from the human gastrointestinal tract express bile salt hydrolase (BSH) activity. How this activity contributes to functions of the microorganisms in the gastrointestinal tract is not known. We tested the hypothesis that a BSH protects the cells that produce it from the toxicity of conjugated bile salts. Forty-nine strains of numerous Lactobacillus spp. were assayed to determine their capacities to express BSH activities (taurodeoxycholic acid [TDCA] hydrolase and taurocholic acid [TCA] hydrolase activities) and their capacities to resist the toxicity of a conjugated bile acid (TDCA). Thirty of these strains had been isolated from the human intestine, 15 had been recovered from dairy products, and 4 had originated from other sources. Twenty-six of the strains expressed both TDCA hydrolase and TCA hydrolase activities. One strain that expressed TDCA hydrolase activity did not express TCA hydrolase activity. Conversely, in one strain for which the assay for TDCA hydrolase activity gave a negative result there was evidence of TCA hydrolase activity. Twenty-five of the strains were found to resist the toxicity of TDCA. Fourteen of these strains were of human origin, nine were from dairy products, and two were from other sources. Of the 26 strains expressing both TDCA hydrolase and TCA hydrolase activities, 15 were resistant to TDCA toxicity, 6 were susceptible, and 5 gave inconclusive results. Of the 17 strains that gave negative results for either of the enzymes, 7 were resistant to the toxicity, 9 were susceptible, and 1 gave inconclusive results. These findings do not support the hypothesis tested. They suggest, however, that BSH activity is important at some level for lactobacillus colonization of the human intestine.  相似文献   

8.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

9.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

10.
This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.  相似文献   

11.
The goal of this study is to improve the adhesion and survival of yogurt bacteria with probiotic traits by using polysorbate 80, a food additive emulsifier commonly found in milk derivative products. Polysorbate 80 was used at 1% (w/v), and its effects on yogurt bacteria's survival under simulated digestive conditions, cholesterol uptake activities, bile salt hydrolase (BSH) activity, and adhesion to HT-29 culture were studied. In the presence of 1% polysorbate 80, both starters demonstrated better cholesterol uptake and BSH activities, as well as higher bacterial survival at pH 2.5, particularly in associated cultures. In the presence of 0.3 % bile or cholic acid, polysorbate 80 reduced the drop in L. bulgaricus's survival load. However, the carbon source had a greater impact on S. thermophilus bile tolerance than the food additive emulsifier. Oleic acid was incorporated into both bacterial membranes when grown in the presence of bile and polysorbate 80, resulting in a higher unsaturated/saturated fatty acid ratio. In the presence of polysorbate 80, S. thermophilus adhered to HT-29 cells 2.3-fold better, while L. bulgaricus's adhesion remained unchanged. We suggest that polysorbate 80 may have a protective effect on cell survival under simulated digestive stress as well as a role in yogurt bacteria adhesion to the intestines, giving these bacteria more opportunities to exert their purported cholesterol-removal activities.  相似文献   

12.
The allosteric behaviour of Lactococcus lactis prolidase (Xaa-Pro dipeptidase) of this proline-specific peptidase was investigated where it was hypothesized that intersubunit interactions between a loop structure and three residues near the active site contributed to this behaviour. Seven mutant prolidases were constructed, and it was observed that the loopless mutant and His303 substitution inactivated the enzyme. Ser307 substitution revealed that this residue influenced the substrate binding, as judged from its kinetic constants and substrate specificity; however, this residue did not contribute to allostery of prolidase. R293S mutation resulted in the disappearance of the allosteric behaviour yielding a Hill constant of 0.98 while the wild type had a constant of 1.58. In addition, the R293S mutation suppressed the substrate inhibition that was observed in other mutants and wild type. The Km value of R293S was 2.9-fold larger and Vmax was approximately 50% less as compared to the wild type. The results indicated that Arg293 increased the affinity for substrates while introducing allosteric behaviour and substrate inhibition. Computer modelling suggested that negative charges on the loop structure interacted with Arg293 and Ser307 to maintain these characteristics. It was, therefore, concluded that Arg293, His303, Ser307 and the loop contributed to the enzyme's allosteric characteristics.  相似文献   

13.
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted ΔPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric kcat?-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E?B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.  相似文献   

14.
The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth.  相似文献   

15.
Bile tolerance is an important criterion in the selection of microbial strains for probiotic use. The survival and morphological changes of a potential probiotic strain, Lactobacillus acidophilus M92, in the presence of bile salts were examined. Lactobacillus acidophilus M92 has shown a satisfactory degree of tolerance against oxgall and individual bile salts tested, especially to taurocholate. The higher resistance of L. acidophilus M92 against taurine-conjugated bile salts relative to deconjugated and glycine-conjugated bile salts was attributed to its reaction to the stronger acidity of the former. Furthermore, bile salt hydrolase (BSH) was active when L. acidophilus M92 was grown in the presence of sodium taurocholate. The rate of BSH activity was highest at the exponential growth phase. It was hypothesised that BSH activity may be important for the bile salt resistance of this strain. The colonial and cellular morphology may also be a valuable parameter in the selection of bile salt-resistant Lactobacillus strains for probiotic use. Smooth (S) and rough (R) colonies, appeared in the original L. acidophilus M92 bacterial culture and demonstrated a different degree of bile tolerance. Rough colonies were more sensitive to bile salts than smooth ones. The R colony cells assumed a round form, probably induced by gaps in the cell wall caused by the cytotoxicity of glycodeoxycholate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.  相似文献   

17.
Bile salt hydrolase (BSH) is an enzyme produced by the intestinal microflora that catalyzes the deconjugation of glycine- or taurine-linked bile salts. The crystal structure of BSH reported here from Bifidobacterium longum reveals that it is a member of N-terminal nucleophil hydrolase structural superfamily possessing the characteristic alphabetabetaalpha tetra-lamellar tertiary structure arrangement. Site-directed mutagenesis of the catalytic nucleophil residue, however, shows that it has no role in zymogen processing into its corresponding active form. Substrate specificity was studied using Michaelis-Menten and inhibition kinetics and fluorescence spectroscopy. These data were compared with the specificity profile of BSH from Clostridium perfrigens and pencillin V acylase from Bacillus sphaericus, for both of which the three-dimensional structures are available. Comparative analysis shows a gradation in activity toward common substrates, throwing light on a possible common route toward the evolution of pencillin V acylase and BSH.  相似文献   

18.
Bacterial bile salt hydrolases catalyze the degradation of conjugated bile acids in the mammalian gut. The crystal structures of conjugated bile acid hydrolase (CBAH) from Clostridium perfringens as apoenzyme and in complex with taurodeoxycholate that was hydrolyzed to the reaction products taurine and deoxycholate are described here at 2.1 and 1.7 A resolution, respectively. The crystal structures reveal close relationship between CBAH and penicillin V acylase from Bacillus sphaericus. This similarity together with the N-terminal cysteine classifies CBAH as a member of the N-terminal nucleophile (Ntn) hydrolase superfamily. Both crystal structures show an identical homotetrameric organization with dihedral (D(2) or 222) point group symmetry. The structure analysis of C. perfringens CBAH identifies critical residues in catalysis, substrate recognition, and tetramer formation which may serve in further biochemical characterization of bile acid hydrolases.  相似文献   

19.
The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[-] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(-) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA. PURPOSE OF WORK: To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.  相似文献   

20.
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite − 1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)8-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号