首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermostable dipeptidase from Bacillus stearothermophilus, a typical metalloenzyme containing 1.0g atom of Zn per mole of subunit of the dimeric enzyme was markedly activated by exogenous divalent metal ions such as Mn2+, Co2+, and Cd2+ . In contrast, several others including Ba2+, Hg2+, and Cu2+ considerably inhibited the enzyme, even the inherent metal, Zn2+, being slightly inhibitory. To study the metal-binding properties of this dipeptidase, the enzyme was completely resolved to the inactive, Zn-free apoenzyme by treatment with EDTA in the presence of guanidine hydrochloride in a weakly acidic buffer. The apoenzyme was readily reconstituted by incubation with either Zn2+, Mn2+, or Co2+, restoring the catalytic activity. The Mn-reconstituted enzyme had nearly twice the activity of the original Zn-enzyme. Combined with kinetic analyses of reconstitution of the apoenzyme with metal ions, these results show that the enzyme has two non-identical metal-binding sites, each with a different property. Furthermore, substitution of Mn2+ or Co2+ for Zn2+ considerably lowered the thermostability of the enzyme without affecting the overall conformation of the enzyme protein, suggesting that the prosthetic Zn is playing dual roles in conformational stability and catalysis of the thermostable dipeptidase.  相似文献   

2.
This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co2+, Mn2+, and Zn2+ inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co2+ and Mn2+ to be mixed (competitive and non-competitive) inhibitors while Zn2+ to be a competitive inhibitor. However, only a high concentration of Fe2+ could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2 mM DTT (dithiothreitol) but neither by cysteine nor by β-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co2+, Mn2+, and Zn2+. Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co2+, Mn2+, and Zn2+) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.  相似文献   

3.
Reactivation of the pea mitochondrial pyruvate dehydrogenase complex was the result of dephosphorylation catalyzed by phospho-pyruvate dehydrogenase-phosphatase, an intrinsic component of the complex. Phosphatase activity was dependent upon divalent metal ions, with Mg2+ more effective than Mn2+ or Co2+. The Michaelis constants for Mg2+, Mn2+, and Co2+ were 3.8, 1.7, and 1.4 millimolar, respectively. Neither the rate nor the extent of activation of the phosphatase by Mg2+ or Mn2+ was effected by up to 100 units per assay of megamodulin. Calcium ions did not activate pea mitochondrial phospho-pyruvate dehydrogenase-phosphatase, and low concentrations of Ca2+ antagonized activation by other divalent cations. Phosphatase activity was inhibited by fluoride and ortho-phosphate but not by molybdate or vanadate. Krebs cycle intermediates, adenylates, polyamines, amino acids, and phosphoamino acids were without effect upon pea mitochondrial phospho-pyruvate dehydrogenase-phosphatase activity in vitro.  相似文献   

4.
A functional role of Co2+ and Mn2+ in the d-glucose- and d-xylose-isomerizing reactions by d-glucose-isomerizing enzyme obtained from the cells of Bacillus coagulans, strain HN–68 was investigated. (1) The enzyme required Co2+ and Mn2+ for d-glucose- and d-xylose-isomerizing activities, respectively. (2) The enzyme which bound the metal, Co2+- or Mn2+-enzyme, was active form. Co2+ was bound to the enzyme in a molar ratio of 4:1. (3) The rate of activation by metal ion varied with incubation pH. (4) The binding of substrate to the enzyme was completely independent in the presence of metal ions. (5) However, it seemed unlikely that the Co2+ and Mn2+ acted as catalyzer on the reaction. (6) The binding sites for Co2+ and Mn2+ were different from each other. (7) The experimental data obtained might be successfully explained in terms of the suitable conformational changes for d-glucose and d-xylose isomerization, which were induced in the catalytic sites of the enzyme by binding Co2+ and Mn2+, respectively.  相似文献   

5.
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.  相似文献   

6.
1. The effects of 19 bivalent cations on the activity, stability and capacity to hydrolyse endogenous arginine of axolotl liver arginase were studied. 2. It was found that Fe2+, Co2+, Ni2+ and Zn2+, as well as Mn2+, stabilize the enzyme and render it able to hydrolyse endogenous arginine. 3. By using different concentrations of Co2+ and Ni2+ it was possible to dissociate the effect of each of the metal ions on the activity and stability of arginase from that on its capacity to hydrolyse endogenous arginine. 4. The effects of Mn2+, Co2+ and Ni2+ on the activity and stability of arginase in the homogenate were also observed with purer preparations of the enzyme. 5. It is suggested that the capacity to hydrolyse endogenous arginine is a consequence of the integration of arginase with the arginine-formation sites.  相似文献   

7.
It has been shown that removal of manganese from the water-oxidizing complex (WOC) of photosystem II (PSII) leads to flash-induced oxygen consumption (FIOC) which is activated by low concentration of Mn2+ (Yanykin et al., Biochim Biophys Acta 1797:516–523, 2010). In the present work, we examined the effect of transition and non-transition divalent metal ions on FIOC in Mn-depleted PSII (apo-WOC-PSII) preparations. It was shown that only Mn2+ ions are able to activate FIOC while other transition metal ions (Fe2+, V2+ and Cr2+) capable of electron donation to the apo-WOC-PSII suppressed the photoconsumption of O2. Co2+ ions with a high redox potential (E 0 for Co2+/Co3+ is 1.8 V) showed no effect. Non-transition metal ions Ca2+ by Mg2+ did not stimulate FIOC. However, Ca2+ (in contrast to Mg2+) showed an additional activation effect in the presence of exogenic Mn2+. The Ca2+ effect depended on the concentration of both Mn2+ and Ca2+. The Ca effect was only observed when: (1) the activation of FIOC induced by Mn2+ did not reach its maximum, (2) the concentration of Ca2+ did not exceed 40 μM; at higher concentrations Ca2+ inhibited the Mn2+-activated O2 photoconsumption. Replacement of Ca2+ by Mg2+ led to a suppression of Mn2+-activated O2 photoconsumption; while, addition of Ca2+ resulted in elimination of the Mg2+ inhibitory effect and activation of FIOC. Thus, only Mn2+ and Ca2+ (which are constituents of the WOC) have specific effects of activation of FIOC in apo-WOC-PSII preparations. Possible reactions involving Mn2+ and Ca2+ which could lead to the activation of FIOC in the apo-WOC-PSII are discussed.  相似文献   

8.
The extent and modes of binding of the divalent metal ions Mn2+ and Co2+ to DNA and the effects of salt on the binding have been studied by measurements of the effects of these paramagnetic metal ions on the longitudinal and transverse relaxation rates of the protons of the solvent water molecules, a technique that is sensitive to overall binding. The number of water molecules coordinated to the DNA–bound Mn2+ and Co2+ is found to be between five and six, and the electron spin relaxation times and the electron-nuclear hyperfine constants associated with Mn2+ and Co2+ are little or not affected by the binding. These observations indicate little disturbance of the hydration sphere of Mn2+ and Co2+ upon binding to DNA. An average 2–3-fold reduction in the exchange rate of the water of hydration of the bound metal ions and an order-of-magnitude increase in their rotational correlation time are attributed to hydrogen-bond formation with the DNA. The binding constants of Mn2+ to DNA, at metal concentrations approaching zero, are found to be inversely proportional to the second power of the salt concentration, in agreement with the predictions of Manning's polyelectrolyte theory. A remarkable quantitative agreement with the polyelectrolyte theory is also obtained for the anticooperativity in the binding of Mn2+ to DNA, although the experimental results can be well accounted for by another simple electrostatic model. The various modes of binding of divalent metal ions to DNA are discussed.  相似文献   

9.
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cdu2+ > Ni2+ ⪢ Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of varying the type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn2+ activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co2+-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5′-dithiobis(2-nitro-benzoate) (DTNB) lead to an almost complete inhibition of Mn2+-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3 had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co2+-activated enzyme than for its Mn2+-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.  相似文献   

10.
1. Pyruvate kinase (ATP–pyruvate phosphotransferase, EC 2.7.1.40) from Ehrlich ascites-tumour cells was purified approximately fivefold by chromatography on DEAE-cellulose. The enzyme was shown to have an absolute requirement for one univalent and for one bivalent metal ion. 2. The univalent metal ion requirements were satisfied by K+, Rb+ or NH4+; Na+ and Cs+ were weak activators but Li+ was inactive. 3. Ca2+ exhibited `non-competitive' and `apparent competitive' effects in relation to the K+ activation. 4. The bivalent metal ion requirements were satisfied by Mg2+, Mn2+ or Co2+; Ba2+, Sr2+, Ca2+, Ni2+, Be2+ and Cu2+ were inactive. Mn2+ and Co2+ were better activators than Mg2+. 5. The bivalent metal ion requirements of purified pyruvate kinase from rabbit muscle were satisfied by Mg2+, Mn2+, Co2+ and to a smaller extent by Ni2+. Mn2+ and Co2+ were better activators than Mg2+. 6. Ca2+ competitively inhibited the activation by Mg2+, Mn2+ and Co2+ for both the tumour and rabbit enzymes. 7. It is concluded that there are no significant differences in metal ion specificity between the tumour and rabbit enzymes. 8. The possible role of metal ions in regulating enzymic and metabolic activities is considered further.  相似文献   

11.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

12.
The activation of muscle pyruvate kinase by divalent cations was studied by steady-state kinetics. Under experimental conditions the enzyme exhibits activation by Mg2+, Co2+, Mn2+, Ni2+, and Zn2+ in descending order of maximal velocity. Combinations of cations were also studied. A synergistic activation was observed with a fixed concentration of Mg2+ and varying concentrations of Mn2+ or of Co2+. This synergism indicates at least two roles for the cations for enzymatic activation and a differential specificity among the cations for the separate functions. Synergistic activation was also observed with fixed Co2+ and varying Mn2+. These results are consistent with a cation specifically required to activate the enzyme and a cation which serves as a cation-nucleotide complex which is a substrate for the reaction. The response observed suggests that Mn2+ is a better activator of the enzyme than is Mg2+, however, MgADP is a better substrate than is MnADP. The lack of a synergistic effect by Ni2+ or Zn2+ with Mg2+ suggests that Ni2+ and Zn2+ are poor activators either because they serve one catalytic function poorly but bind to that site tightly or they serve both catalytic functions poorly in contrast to Mg2+. These studies yield the first simple kinetic evidence that muscle pyruvate kinase, under catalytic conditions of the overall reaction, has a dual divalent cation requirement for activity.  相似文献   

13.
Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co2+, Cd2+, Cu2+, Ni2+ and Mn2+. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn2+. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His3 coordination that is imposed at the protein site.  相似文献   

14.
Treatment of a hyperthermophilic enzyme, alkaline phosphatase from Pyrococcus furiosus (PfuAP), with EDTA completely deactivated PfuAP, indicating that the presence of one or more divalent metal ions is essential for its catalytic activity. Subsequent addition of various divalent metal ions to the apoprotein recovered the enzymatic activity and, in particular, the addition of Co(II) resulted in an over 50-fold increase in activity compared with PfuAP before EDTA treatment. Intriguingly, PfuAP with Co(II) exhibited weaker stability toward heat treatment, suggesting that Co2+ destabilizes the tertiary structure of PfuAP at high temperature.  相似文献   

15.
Summary To obtain more insight into catalytic mechanisms of metallo enzymes and specific metal complexation by proteins we use linear and cyclic pseudopeptides as mimetics. Knowledge about tendencies of complex formation of different ligands with selected transition metal ions is an indispensable prerequisite for the development of homo-and hetero-dinuclear metallo enzyme mimetics. Three pseudotripeptide ligands were investigated with respect to formation tendency and properties of complexes with the transition metal ions Cu2+, Zn2+ Ni2+, Co2+ and Mn2+. To study complexation tendencies we applied different methods. One of the important prerequisites for the application in a secreening of series of peptide ligands is the necessity for a minimal amount of substance. We used and compared certain masspectrometric methods for the estimation of a rank order of complexation of certain transition metal ions. We also applied spectrophotometric titration, circular dichroism measurements, capillary electrophoresis and pH-rate profile of catalytic activity in the attempt to evaluate complex formation tendencies. Except for the spectrophotometric pH-titration and the pH-profile of catalytic activity all methods, were applicable, but each method has its advantages and disadvantages depending on the separation effect of the ligand from the metal complex, and depending on the spectroscopic properties of ligand and complex. The results regarding complex formation are compared to each other. Comparison of pairs by MALDI-TOF-and ESI-MS allows an estimation of the rank order of complexation tendency of one ligand with different metal ions and requires the least amount of substance. The other investigated methods provided additional information on structural properties of the formed complexes; however either they required too much pseudopeptide ligand or were not applicable for all transition metal ions used in this study.  相似文献   

16.
  • 1.1. Alkaline p-nitrophenylphosphate phosphatase of Halobacterium halobiium, either purified or in crude extracts, was progressively inactivated by treatment with several metal chelators.
  • 2.2. The activity of treated crude extracts was fully restored in the presence of 25–50 μM Mn2+ or 1 mM Co2+, and partially restored in the presence of 1 mM Cd2+.
  • 3.3. Zn2+ ions, as well as other divalent cations tested, were without effect.
  • 4.4. In the presence of a saturating concentration of Mn2+, but not Co2+ or Cd2+, the activity of the metal-depleted enzyme reached values well over the native control activity.
  • 5.5. Activation of the metal-depleted enzyme by Mn2+ showed cooperative kinetics, whereas activation by Co2+ showed Lineweaver-Burk kinetics.
  • 6.6. The results suggest that the enzyme contains two different types of metal-binding sites: essential site(s), occupied by endogenous Mn2+ ions, and regulatory site(s), that can be occupied by exogenous Mn2+ with an activating effect.
  相似文献   

17.
To obtain more insight into catalytic mechanisms of metallo enzymes and specific metal complexation by proteins we use linear and cyclic pseudopeptides as mimetics. Knowledge about tendencies of complex formation of different ligands with selected transition metal ions is an indispensable prerequisite for the development of homo- and hetero-dinuclear metallo enzyme mimetics. Three pseudotripeptide ligands were investigated with respect to formation tendency and properties of complexes with the transition metal ions Cu2+, Zn2+, Ni2+, Co2+ and Mn2+. To study complexation tendencies we applied different methods. One of the important prerequisites for the application in a screening of series of peptide ligands is the necessity for a minimal amount of substance. We used and compared certain masspectrometric methods for the estimation of a rank order of complexation of certain transition metal ions. We also applied spectrophotometric titration, circular dichroism measurements, capillary electrophoresis and pH-rate profile of catalytic activity in the attempt to evaluate complex formation tendencies. Except for the spectrophotometric pH-titration and the pH-profile of catalytic activity all methods were applicable, but each method has its advantages and disadvantages depending on the separation effect of the ligand from the metal complex, and depending on the spectroscopic properties of ligand and complex. The results regarding complex formation are compared to each other. Comparison of pairs by MALDI-TOF- and ESI-MS allows an estimation of the rank order of complexation tendency of one ligand with different metal ions and requires the least amount of substance. The other investigated methods provided additional information on structural properties of the formed complexes; however either they required too much pseudopeptide ligand or were not applicable for all transition metal ions used in this study.  相似文献   

18.
Bacterial allantoinase (ALLase; EC 3.5.2.5), which catalyzes the conversion of allantoin into allantoate, possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. Here, we characterized ALLase from Escherichia coli BL21. Purified recombinant ALLase exhibited no activity but could be activated when preincubating with some metal ions before analyzing its activity, and was in the order: Mn2+- ≫ Co2+- > Zn2+- > Ni2+- > Cd2+- ~Mg2+-activated enzyme; however, activity of ALLase (Mn2+-activated form) was also significantly inhibited with 5 mM Co2+, Zn2+, and Cd2+ ions. Activity of Mn2+-activated ALLase was increased by adding the reducing agent dithiothreitol (DTT), but was decreased by treating with the sulfhydryl modifying reagent N-ethylmaleimide (NEM). Inhibition of Mn2+-activated ALLase by chelator 8-hydroxy-5-quinolinesulfonic acid (8-HQSA), but not EDTA, was pH-dependent. Analysis of purified ALLase by gel filtration chromatography revealed a mixture of monomers, dimers, and tetramers. Substituting the putative metal binding residues His59, His61, Lys146, His186, His242, and Asp315 with Ala completely abolished the activity of ALLase, even preincubating with Mn2+ ions. On the basis of these results, as well as the pH-activity profile, the reaction mechanism of ALLase is discussed and compared with those of other cyclic amidohydrolases.  相似文献   

19.
The divalent metal ions Cu2+, Co2+, Mn2+, and Zn2+ form complexes with the fluorescent etheno analogs of the adenine nucleotides. The fluorescence intensity is thereby diminished. The binding strength of the metals to etheno-adenosine triphosphate is higher than to etheno-adenosine di- and monophosphate. The quenching effect of the divalent metal ions can be exploited as a simple routine activity measurement for various kinases and phosphohydrolases.  相似文献   

20.
Arginase is a binuclear Mn2+-metalloenzyme of urea cycle that hydrolyses arginine to ornithine and urea. Unlike other arginases, the Helicobacter pylori enzyme is selective for Co2+. Previous study reported that DTT strongly inhibits the H. pylori enzyme activity suggesting that a disulphide bond is critical for the catalysis. In this study, we have undertaken steady-state kinetics, circular dichroism and mutational analysis to examine the role of a disulphide bond in this protein. By mutational analysis, we show that the disulphide bond is not important for catalytic activity; rather it plays an important role for the stability of the protein as observed from thermal denaturation studies. The loss of catalytic activity in the wild-type protein with DTT is due to the interaction with Co2+. This is verified with the Mn2+-reconstituted proteins which showed a marginal loss in the activity with DTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号