首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The current human mitochondrial (mtDNA) phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b) and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago) and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.  相似文献   

2.
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.  相似文献   

3.
4.
The boundaries between oceanographic domains often function as dispersal barriers for many temperate marine species with a dispersive pelagic larval phase. Yelloweye rockfish (Sebastes ruberrimus, YR) are widely distributed across the northeastern Pacific Ocean, inhabiting coastal rocky reefs from the Aleutian Islands in Alaska through southern California. This species exhibits an extended pelagic larval duration and has the capacity for long distance larval transport. We assayed 2,862 YR individuals from 13 general areas in the northeast Pacific Ocean for allelic variation at nine microsatellite loci. Bayesian model-based clustering analyses grouped individuals from the Strait of Georgia (SG) into a distinct genetic cluster, while individuals from outer coastal water locations (OCLs) were partitioned equally across two genetic clusters, including the cluster associated with the SG fish. Pairwise FST values were consistently an order of magnitude higher for comparisons between the SG and OCLs than they were for all OCL-OCL comparisons (∼0.016 vs. ∼0.001). This same pattern was observed across two time points when individuals were binned into an “old” and “young” group according to birth year (old: ∼0.020 vs. 0.0003; young: ∼0.020 vs. ∼0.004). Additionally, mean allelic richness was markedly lower within the SG compared to the OCLs (8.00 vs. 10.54–11.77). These results indicate that the Strait of Georgia “deep-basin” estuary oceanographic domain acts as a dispersal barrier from the outer coastal waters via the Juan de Fuca Strait. Alternatively, selection against maladapted dispersers across this oceanographic transition may underlie the observed genetic differentiation between the Georgia basin and the outer coastal waters, and further work is needed to confirm the SG-OCL divide acts as a barrier to larval dispersal.  相似文献   

5.

Background

A major unanswered question in the evolution of Homo sapiens is when anatomically modern human populations began to expand: was demographic growth associated with the invention of particular technologies or behavioral innovations by hunter-gatherers in the Late Pleistocene, or with the acquisition of farming in the Neolithic?

Methodology/Principal Findings

We investigate the timing of human population expansion by performing a multilocus analysis of≥20 unlinked autosomal noncoding regions, each consisting of ∼6 kilobases, resequenced in ∼184 individuals from 7 human populations. We test the hypothesis that the autosomal polymorphism data fit a simple two-phase growth model, and when the hypothesis is not rejected, we fit parameters of this model to our data using approximate Bayesian computation.

Conclusions/Significance

The data from the three surveyed non-African populations (French Basque, Chinese Han, and Melanesians) are inconsistent with the simple growth model, presumably because they reflect more complex demographic histories. In contrast, data from all four sub-Saharan African populations fit the two-phase growth model, and a range of onset times and growth rates is inferred for each population. Interestingly, both hunter-gatherers (San and Biaka) and food-producers (Mandenka and Yorubans) best fit models with population growth beginning in the Late Pleistocene. Moreover, our hunter-gatherer populations show a tendency towards slightly older and stronger growth (∼41 thousand years ago, ∼13-fold) than our food-producing populations (∼31 thousand years ago, ∼7-fold). These dates are concurrent with the appearance of the Late Stone Age in Africa, supporting the hypothesis that population growth played a significant role in the evolution of Late Pleistocene human cultures.  相似文献   

6.
Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC) allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals) within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak) and rhyodacite (1.1 ka eruption of Chaos Crags). These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ∼17 ka to secular equilibrium (>350 ka), with most zircon crystallizing during a period between ∼60–200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ∼190 ka. Most zircon are thought to have been captured from “cold storage” in the crystal mush (670–725°C, Hf >10,000 ppm, Eu/Eu* 0.25–0.4) locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf <10,000 ppm, Eu/Eu* >0.4) grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s–1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.  相似文献   

7.
A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard.  相似文献   

8.
The Peranakan Chinese are culturally unique descendants of immigrants from China who settled in the Malay Archipelago ∼300–500 years ago. Today, among large communities in Southeast Asia, the Peranakans have preserved Chinese traditions with strong influence from the local indigenous Malays. Yet, whether or to what extent genetic admixture co-occurred with the cultural mixture has been a topic of ongoing debate. We performed whole-genome sequencing (WGS) on 177 Singapore (SG) Peranakans and analyzed the data jointly with WGS data of Asian and European populations. We estimated that Peranakan Chinese inherited ∼5.62% (95% confidence interval [CI]: 4.76–6.49%) Malay ancestry, much higher than that in SG Chinese (1.08%, 0.65–1.51%), southern Chinese (0.86%, 0.50–1.23%), and northern Chinese (0.25%, 0.18–0.32%). A sex-biased admixture history, in which the Malay ancestry was contributed primarily by females, was supported by X chromosomal variants, and mitochondrial (MT) and Y haplogroups. Finally, we identified an ancient admixture event shared by Peranakan Chinese and SG Chinese ∼1,612 (95% CI: 1,345–1,923) years ago, coinciding with the settlement history of Han Chinese in southern China, apart from the recent admixture event with Malays unique to Peranakan Chinese ∼190 (159–213) years ago. These findings greatly advance our understanding of the dispersal history of Chinese and their interaction with indigenous populations in Southeast Asia.  相似文献   

9.
Studies of the African Middle Stone Age (MSA) have become central for defining the cultural adaptations that accompanied the evolution of modern humans. While much of recent research in South Africa has focused on the Still Bay and Howiesons Poort (HP), periods following these technocomplexes were often neglected. Here we examine lithic assemblages from Sibudu that post-date the HP to further the understanding of MSA cultural variability during the Late Pleistocene. Sibudu preserves an exceptionally thick, rich, and high-resolution archaeological sequence that dates to ∼58 ka, which has recently been proposed as type assemblage for the “Sibudan”. This study presents a detailed analysis of the six uppermost lithic assemblages from these deposits (BM-BSP) that we excavated from 2011–2013. We define the key elements of the lithic technology and compare our findings to other assemblages post-dating the HP. The six lithic assemblages provide a distinct and robust cultural signal, closely resembling each other in various technological, techno-functional, techno-economic, and typological characteristics. These results refute assertions that modern humans living after the HP possessed an unstructured and unsophisticated MSA lithic technology. While we observed several parallels with other contemporaneous MSA sites, particularly in the eastern part of southern Africa, the lithic assemblages at Sibudu demonstrate a distinct and so far unique combination of techno-typological traits. Our findings support the use of the Sibudan to help structuring this part of the southern African MSA and emphasize the need for further research to identify the spatial and temporal extent of this proposed cultural unit.  相似文献   

10.
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.  相似文献   

11.
Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria–Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100–1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.  相似文献   

12.
Following up on our previous study, we conducted a genome-wide analysis of admixture for two Uyghur population samples (HGDP-UG and PanAsia-UG), collected from the northern and southern regions of Xinjiang in China, respectively. Both HGDP-UG and PanAsia-UG showed a substantial admixture of East-Asian (EAS) and European (EUR) ancestries, with an empirical estimation of ancestry contribution of 53:47 (EAS:EUR) and 48:52 for HGDP-UG and PanAsia-UG, respectively. The effective admixture time under a model with a single pulse of admixture was estimated as 110 generations and 129 generations, or admixture events occurred about 2200 and 2580 years ago for HGDP-UG and PanAsia-UG, respectively, assuming an average of 20 yr per generation. Despite Uyghurs' earlier history compared to other admixture populations, admixture mapping, holds promise for this population, because of its large size and its mixture of ancestry from different continents. We screened multiple databases and identified a genome-wide single-nucleotide polymorphism panel that can distinguish EAS and EUR ancestry of chromosomal segments in Uyghurs. The panel contains 8150 ancestry-informative markers (AIMs) showing large frequency differences between EAS and EUR populations (FST > 0.25, mean FST = 0.43) but small frequency differences (7999 AIMs validated) within both populations (FST < 0.05, mean FST < 0.01). We evaluated the effectiveness of this admixture map for localizing disease genes in two Uyghur populations. To our knowledge, our map constitutes the first practical resource for admixture mapping in Uyghurs, and it will enable studies of diseases showing differences in genetic risk between EUR and EAS populations.  相似文献   

13.
We here explore the use of a Bayesian approach to island biogeography for disentangling the evolutionary origins of a continental-scale floristic pattern, the enigmatic ‘Rand Flora’. The existence of disjunct distributions across many plant lineages between Macaronesia–northwest Africa, Horn of Africa–southern Arabia and east–south Africa has long intrigued botanists, but only now can we start analysing it within a statistical framework.Phylogenetic and distributional data from 13 plant lineages exhibiting this disjunct distribution were analysed to estimate area carrying capacities and historical rates of biotic exchange between areas. The results indicate that there has been little exchange between southern Africa and the northern African region, and that this exchange occurred via east Africa. Northwest Africa–Macaronesia shows the smallest carrying capacity but highest dispersal rate with other regions, suggesting that its flora was built up by immigration of lineages, probably from the Mediterranean region and western Asia. In contrast, southern Africa shows the highest carrying capacity and lowest dispersal rate, suggesting a flora formed by in situ diversification.We discuss further improvements of the method for addressing more complex hypotheses, such as asymmetric dispersal between regions or repeated cyclical events.  相似文献   

14.
15.
The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.  相似文献   

16.
We extend the continuity of microblade technology in the Indian Subcontinent to 45 ka, on the basis of optical dating of microblade assemblages from the site of Mehtakheri, (22° 13'' 44″ N Lat 76° 01'' 36″ E Long) in Madhya Pradesh, India. Microblade technology in the Indian Subcontinent is continuously present from its first appearance until the Iron Age (~3 ka), making its association with modern humans undisputed. It has been suggested that microblade technology in the Indian Subcontinent was developed locally by modern humans after 35 ka. The dates reported here from Mehtakheri show this inference to be untenable and suggest alternatively that this technology arrived in the Indian Subcontinent with the earliest modern humans. It also shows that modern humans in Indian Subcontinent and SE Asia were associated with differing technologies and this calls into question the “southern dispersal” route of modern humans from Africa through India to SE Asia and then to Australia. We suggest that modern humans dispersed from Africa in two stages coinciding with the warmer interglacial conditions of MIS 5 and MIS 3. Competitive interactions between African modern humans and Indian archaics who shared an adaptation to tropical environments differed from that between modern humans and archaics like Neanderthals and Denisovans, who were adapted to temperate environments. Thus, while modern humans expanded into temperate regions during warmer climates, their expansion into tropical regions, like the Indian Subcontinent, in competition with similarly adapted populations, occurred during arid climates. Thus modern humans probably entered the Indian Subcontinent during the arid climate of MIS 4 coinciding with their disappearance from the Middle East and Northern Africa. The out of phase expansion of modern humans into tropical versus temperate regions has been one of the factors affecting the dispersal of modern humans from Africa during the period 200–40 ka.  相似文献   

17.
Pre-Pottery Neolithic assemblages are best known from the fertile areas of the Mediterranean Levant. The archaeological site of Jebel Qattar 101 (JQ-101), at Jubbah in the southern part of the Nefud Desert of northern Saudi Arabia, contains a large collection of stone tools, adjacent to an Early Holocene palaeolake. The stone tool assemblage contains lithic types, including El-Khiam and Helwan projectile points, which are similar to those recorded in Pre-Pottery Neolithic A and Pre-Pottery Neolithic B assemblages in the Fertile Crescent. Jebel Qattar lies ∼500 kilometres outside the previously identified geographic range of Pre-Pottery Neolithic cultures. Technological analysis of the typologically diagnostic Jebel Qattar 101 projectile points indicates a unique strategy to manufacture the final forms, thereby raising the possibility of either direct migration of Levantine groups or the acculturation of mobile communities in Arabia. The discovery of the Early Holocene site of Jebel Qattar suggests that our view of the geographic distribution and character of Pre-Pottery Neolithic cultures may be in need of revision.  相似文献   

18.
Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1–Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.  相似文献   

19.
A major unanswered question regarding the dispersal of modern humans around the world concerns the geographical site of the first human steps outside of Africa. The "southern coastal route" model predicts that the early stages of the dispersal took place when people crossed the Red Sea to southern Arabia, but genetic evidence has hitherto been tenuous. We have addressed this question by analyzing the three minor west-Eurasian haplogroups, N1, N2, and X. These lineages branch directly from the first non-African founder node, the root of haplogroup N, and coalesce to the time of the first successful movement of modern humans out of Africa, ~60 thousand years (ka) ago. We sequenced complete mtDNA genomes from 85 Southwest Asian samples carrying these haplogroups and compared them with a database of 300 European examples. The results show that these minor haplogroups have a relict distribution that suggests an ancient ancestry within the Arabian Peninsula, and they most likely spread from the Gulf Oasis region toward the Near East and Europe during the pluvial period 55-24 ka ago. This pattern suggests that Arabia was indeed the first staging post in the spread of modern humans around the world.  相似文献   

20.
In order to better understand Late Quaternary pelagic aragonite preservation in the western Arabian Sea we have investigated a high-resolution sediment core 905 off Somalia. Pteropod preservation is enhanced in times of reduced monsoon-driven productivity, indicated by low amounts of Corg and low barium to aluminium (Ba/Al) ratios. All periods corresponding to Heinrich events in the North Atlantic are represented by maxima in shell preservation of the common pteropod Limacina inflata (LDX values < 2, except for H5-equivalent with a poorer shell preservation, LDX > 2.66). Good shell preservation is also found during stadials at 52.1–53.2, 36, 33.2, and 31.9 ka. Relative abundance of pteropods and their fragments in the coarse fraction reaches maxima during Marine Isotope Stage (MIS) 5.2, during time-equivalents of Heinrich events 4–6 and in stadials at  53,  42.5, and 41.4 ka.On longer time scales, the pteropod abundance corresponds to the ‘Indo-Pacific carbonate preservation type’ with poor preservation during interglacials and better preservation during glacials. Late MIS 5 to early MIS 4 sections (84.1–64.8 ka) and the Late Holocene interval (6.5–0 ka) of core 905 contain only traces of pteropods. The early Holocene (9.2–6.5 ka) part is characterized by low pteropod amounts. Between 64.8 and 43.4 ka strong fluctuations occur and an intermediate average relative pteropod abundance is revealed. Between 43.4 and 9.2 ka the highest amounts in relative pteropod abundance in core 905 are observed. Besides the regional monsoonal influence on deepwater chemistry, changes in deepwater circulation occurring on glacial/interglacial and stadial/interstadial time scales might have affected pteropod preservation. However, it remains elusive whether 1) deep water formation in the Arabian Sea, 2) inflow of Glacial North Atlantic Intermediate Water or 3) change in water mass properties of the Circumpolar Deep Water (which is the water mass currently bathing this site) contributed to the observed pteropod preservation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号