首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
To document arid Northern China as a diversification center for desert plants, and to better understand the mechanisms of desert taxa diversification, we used five cpDNA spacers (trnL-trnF, rps16, psbA-trnH, psbK-psbI and trnS-trnG) to investigate Lagochilus ilicifolius in all distribution areas, including Northern China, Mongolia and Russia. Phylogenetic analyses showed that L. ilicifolius comprises two distinctive lineages, one distributed in China, and another in Mongolia–Russia. Our data confirmed that arid Northern China, is a distinctive area with many endemic genera. Biogeographic inferences, based on a Bayesian uncorrelated lognormal model together with molecular dating, suggested that the main diversification within the species occurred in the Pleistocene (ca. 1.38–0.3 Ma), resulting from the transition of the climate of Eurasia to a dry-cold pattern as well as the desertification caused the vicariance of desert plants.  相似文献   

2.
Phylogenetic studies were conducted for Carpinus and the subfamily Coryloideae (Betulaceae) using sequences of the chloroplast matK gene, the trnL-trnF region (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) and the psbA-trnH intergenic spacer, and the nuclear ribosomal ITS regions. The combined analyses of the three chloroplast regions suggest that Coryloideae is monophyletic; Ostryopsis is sister to the Carpinus - Ostrya clade; Corylus is monophyletic and sister to the Ostrya - Carpinus - Ostryopsis clade; Ostrya is paraphyletic; and within Carpinus, species of sect. Carpinus from eastern Asia form a monophyletic group, whereas the positions of C. betulus from Europe and C. caroliniana from eastern North America are unresolved within the Carpinus clade. The cpDNA tree generated in this study is largely congruent with the previously published ITS results, but the ITS tree places Carpinus sect. Distegocarpus as sister to the Ostrya - Carpinus sect. Carpinus clade. Future work is needed to examine the relationships within the Ostrya - Carpinus clade, evaluate the generic status of Ostrya, and test the phylogenetic position of Ostryopsis.  相似文献   

3.
Sassafras (Lauraceae) consists of three species disjunct between eastern Asia (S. tzumu and S. randaiense) and eastern North America (S. albidum). Phylogenetic analysis based on sequences of nuclear ribosomal ITS and three chloroplast non-coding regions (rpl16, trnL-F, and psbA-trnH) showed that Sassafras is monophyletic and that the eastern North American S. albidum is sister to the clade of its two eastern Asian counterparts. Their intercontinental divergence was estimated to be 13.80 ± 2.29−16.69 ± 2.52 million years ago (mya) using the penalized likelihood method with the ITS and three chloroplast markers. Biogeographic analyses combined with fossil evidence suggest that Sassafras has a relict distribution in the Northern Hemisphere without a Gondwanan link. The divergence time of the two eastern Asian species (the continental Chinese Sassafras tzumu and S. randaiense endemic to Taiwan) is estimated to be 0.61 ± 0.75−2.23 ± 0.76 mya. Sassafras randaiense from Taiwan was most likely derived from an ancestor from continental China.  相似文献   

4.

Background and Aims

The subgenus Ceratotropis in the genus Vigna is widely distributed from the Himalayan highlands to South, Southeast and East Asia. However, the interspecific and geographical relationships of its members are poorly understood. This study investigates the phylogeny and biogeography of the subgenus Ceratotropis using chloroplast DNA sequence data.

Methods

Sequence data from four intergenic spacer regions (petA-psbJ, psbD-trnT, trnT-trnE and trnT-trnL) of chloroplast DNA, alone and in combination, were analysed using Bayesian and parsimony methods. Divergence times for major clades were estimated with penalized likelihood. Character evolution was examined by means of parsimony optimization and MacClade.

Key Results

Parsimony and Bayesian phylogenetic analyses on the combined data demonstrated well-resolved species relationships in which 18 Vigna species were divided into two major geographical clades: the East Asia–Southeast Asian clade and the Indian subcontinent clade. Within these two clades, three well-supported eco-geographical groups, temperate and subtropical (the East Asia–Southeast Asian clade) and tropical (the Indian subcontinent clade), are recognized. The temperate group consists of V. minima, V. nepalensis and V. angularis. The subtropical group comprises the V. nakashimaeV. riukiuensisV. minima subgroup and the V. hirtellaV. exilisV. umbellata subgroup. The tropical group contains two subgroups: the V. trinerviaV. reflexo-pilosaV. trilobata subgroup and the V. mungoV. grandiflora subgroup. An evolutionary rate analysis estimated the divergence time between the East Asia–Southeast Asia clade and the Indian subcontinent clade as 3·62 ± 0·3 million years, and that between the temperate and subtropical groups as 2·0 ± 0·2 million years.

Conclusions

The findings provide an improved understanding of the interspecific relationships, and ecological and geographical phylogenetic structure of the subgenus Ceratotropis. The quaternary diversification of the subgenus Ceratotropis implicates its geographical dispersal in the south-eastern part of Asia involving adaptation to climatic condition after the collision of the Indian subcontinent with the Asian plate. The phylogenetic results indicate that the epigeal germination is plesiomorphic, and the germination type evolved independently multiple times in this subgenus, implying its limited taxonomic utility.  相似文献   

5.
The geological and climatic oscillations influenced the geographic distribution and demography of most present-day species, but few studies have investigated evolutionary history of species adapted to the tropical regions of Southeast Asia. Here, using sequence datasets obtained from three chloroplast DNA fragments (trnH-psbA, trnS-trnG, and trnL-F) from 320 individuals belonging to 24 natural populations, we investigated the phylogeographical history of Tacca chantrieri, which inhabits Southeast Asian tropical forests. Although relatively high level of differentiation among the populations were observed, mismatch distribution and neutrality tests showed no evidence of recent demographic population expansion. Phylogenetic inference exhibited two identified population groups showing a disjunctive distribution of dominant haplotypes. The split in cpDNA was largely consistent with the Tanaka line and Red River geographically. Molecular clock estimations revealed that the two lineages diverged during Pleistocene approximately 1.16 Ma. Therefore, the disjunct distribution of T.chantrieri could be explained by both the vicariance caused by Red River as well as ecological barriers caused by the different monsoon climates (Southwest monsoon vs. Southeast monsoon) that developed during the Pleistocene. The Tanaka line can be considered as a climatically driven barrier that influenced present-day plant dispersal.  相似文献   

6.
A new species, Altingioxylon hainanensis, is described from the Eocene Changchang Formation of the Changchang Basin on Hainan Island, South China. It is the first record of a fossil wood assigned to Altingiaceae found in China, and the most ancient evidence of wood for this family in eastern Asia. The new species is similar to A. rhodoleioides, known since the Miocene in India and Java Island, and to Altingia hisauchii from the Miocene to Pliocene of Japan. The close resemblance between these species and Liquidambar sp., known from the Middle Miocene of western North America, provides additional evidence for the migration of their ancestors from Asia to North America across the Bering land bridge during the Miocene. Distinctions in ray sizes between the eastern Asian specimens and their contemporaries from Europe to Kazakhstan is suggested as a result of the divergence between the large eastern Asian clade and the North American–west Asian clade within Altingiaceae during the Eocene–Oligocene. The presence of crystals in ray cells may be considered an ancestral condition that persists in the eastern Asian lineages up to the extant Altingia and Semiliquidambar, but which was lost in other Altingiaceae in the course of evolution.  相似文献   

7.
Salvia subg. Calosphace (Lamiaceae, Lamiales) is a highly diverse clade endemic to the New World. The phylogenetic relationships of Calosphace have been previously investigated using DNA sequences of nuclear ITS region and plastid psbA–trnH intergenic spacer, but the resulting trees lack resolution and support for many clades. The present paper reassesses the phylogenetic relationships of subgenus Calosphace, including a broader taxon sampling, with a special focus on representing previously unsampled sections, and using an additional plastid marker (trnL–trnF region). Our results show increased resolution and overall patterns of support, recovering ten main clades. Within core Calosphace, the most inclusive of these main clades, 17 new subclades were identified. Of the 42 sections for which more than one species was analysed, only 12 are monophyletic. Our biogeographical analysis identified at least twelve migrations to South America from Mexican and Central American lineages, in agreement with previous suggestions of multiple origins of South American Calosphace diversity. This analysis also confirmed a colonization of the Antilles by Andean lineages. The reconstruction of ancestral states of pollination syndromes showed multiple shifts to ornithophily from melittophily and one reversal to the latter.  相似文献   

8.
Peracarpeae is a small tribe consisting of three genera: Homocodon, Heterocodon and Peracarpa, with a disjunct distribution between eastern Asia and western North America. Homocodon is endemic to southwestern China and was previously placed in the western North American genus Heterocodon. Our phylogenetic analysis using four plastid markers (matK, atpB, rbcL and trnL-F) suggests the polyphyly of Peracarpeae. Homocodon is sister to a clade consisting of the eastern Asian Adenophora, Hanabusaya and species of Campanula from the Mediterranean region and North America, rather than forming a clade with Heterocodon. Homocodon and its Eurasia relatives are estimated to have diverged in the early Miocene (16.84 mya, 95% HPD 13.35–21.45 mya). The eastern Asian Peracarpa constitutes a clade with the North American Heterocodon, Githopsis and three species of Campanula, supporting a disjunction between eastern Asia and North America in Campanulaceae. The Asian-North American disjunct lineages diverged in the early Miocene (16.17 mya, 95% HPD 13.12–20.9 mya). The biogeographic analyses suggest that Homocodon may be a relict of an early radiation in eastern Asia, and that Peracarpa and its closest North American relatives most likely originated from a Eurasian ancestor.  相似文献   

9.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

10.
Based upon DNA sequences from six plastid regions (rbcL, psbB-psbH, trnL-trnF, rpS16, psbA-trnH, rpS16-trnK) and the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, the phylogenetic relationships in the genus Nitraria and family Nitrariaceae are investigated by using methods of maximum parsimony, maximum likelihood, and Bayesian inference. Our study strongly supports the monophyly of Nitraria. Nitraria can be divided into four parts, namely, the N. sphaerocarpa group, N. retusa group, the N. roborowskii and N. tangutorum group, and a group consisting of N. schoberi, N. komarovii, N. sibirica, and N. billardieri. Ancestral area reconstruction using S-Diva shows that eastern Central Asia is most likely the place of origin, and then dispersals occurred to western Central Asia, Africa, and Australia.  相似文献   

11.
Phylogenetic analyses were conducted for Astilbe (Saxifragaceae), an Asian/eastern North American disjunct genus, using sequences of nuclear ribosomal internal transcribed spacer (ITS) and plastid matK, trnL‐trnF and psbA‐trnH regions. The monophyly of Astilbe is well supported by both ITS and plastid sequences. Topological incongruence was detected between the plastid and the ITS trees, particularly concerning the placement of the single North American species, A. biternata, which may be most probably explained by its origin involving hybridization and/or allopolyploidy with plastid capture. In Astilbe, all species with hermaphroditic flowers constitute a well‐supported clade; dioecious species form a basal grade to the hermaphroditic clade. Astilbe was estimated to have split with Saxifragopsis from western North America at 20.69 Ma (95% HPD: 12.14–30.22 Ma) in the early Miocene. This intercontinental disjunction between Astilbe and Saxifragopsis most likely occurred via the Bering land bridge. The major clade of Astilbe (all species of the genus excluding A. platyphylla) was inferred to have a continental Asian origin. At least three subsequent migrations or dispersals were hypothesized to explain the expansion of Astilbe into North America, Japan and tropical Asian islands. The intercontinental disjunct lineage in Astilbe invokes a hybridization event either in eastern Asia or in North America. This disjunction in Astilbe may be explained by a Beringian migration around 3.54 Ma (95% high posterior density: 1.29–6.18 Ma) in the late Tertiary, although long‐distance dispersal from eastern Asia to North America is also likely. The biogeographical connection between continental Asia, Taiwan, the Philippines and other tropical Asian islands in Astilbe provides evidence for the close floristic affinity between temperate or alpine south‐western China and tropical Asia. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

12.
To elucidate the evolutionary history of the genus Capsella, we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandiflora, C. rubella and C. bursa‐pastoris. We sequenced the ITS and four loci of noncoding cpDNA regions (trnL – F, rps16, trnH –psbA and trnQ –rps16). Sequence data were evaluated with parsimony and Bayesian analyses. Divergence time estimates were carried out with the software package BEAST. We also performed isozyme, cytological, morphological and biogeographic studies. Capsella orientalis (self‐compatible, SC; 2n = 16) forms a clade (eastern lineage) with C. bursa‐pastoris (SC; 2n = 32), which is a sister clade (western lineage) to C. grandiflora (self‐incompatible, SI; 2n = 16) and C. rubella (SC; 2n = 16). Capsella bursa‐pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32) is allopolyploid and emerged from interspecific hybridization between C. bursa‐pastoris and C. grandiflora. The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confined to steppe‐like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages.  相似文献   

13.
Rhododendron subgenus Hymenanthes comprises >200 highly interfertile species in SE Asia (mainly Himalayas and southern China) plus the 10–11 members of subsection Pontica (excluding R. hyperythrum) distributed outside SE Asia. Parsimony and Bayesian analyses of cpDNA matK and trnL-F sequence data divided Hymenanthes into two clades: clade H, in which two Pontica species and the SE Asian R. adenopodum were sister to a clade of 60 SE Asian species, and clade P comprising eight Pontica species plus R. praevernum, R. calophytum, and R. insigne from SE Asia. If these three species belong in Pontica, they expand its range substantially. However, as they have no morphological links to Pontica, they might descend from clade H species that captured chloroplasts from a now extinct species of Pontica. Either way, their distribution within the Chinese/Himalayan range of Rhododendron indicates an ancestor that came from the north or east to meet the diversifying group of Hymenanthes in the Himalayas, making the SE Asian members of Hymenanthes a polyphyletic group.  相似文献   

14.
Salvia divinorum Epl. & Játiva-M. (Lamiaceae) is a potent hallucinogenic plant that is classified within Salvia subgenus Calosphace, section Dusenostachys, and hypothesized to be an interspecific hybrid. It is of ethnobotanical significance due to its employment in traditional healing ceremonies by the Mazatecs of Oaxaca, Mexico, and due to its unique pharmacology—a highly selective, non-nitrogenous, κ-opioid receptor agonist. In order to test its phylogenetic position and putative hybridity, we sequenced multiple DNA regions (ITS, trnL-trnF, and psbA-trnH) of 52 species—representing the major lineages of subgenus Calosphace—and six accessions of S. divinorum. Our molecular phylogenetic results suggest that S. divinorum should not be classified within Dusenostachys and that it is not a hybrid. Additionally, we determine that the closest known relative of this psychoactive Mexican sage is S. venulosa, a rare endemic of Colombia.  相似文献   

15.
16.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

17.
The genus Lespedeza (Fabaceae) consists of 40 species disjunctively distributed in East Asia and eastern North America. Phylogenetic relationships of all Lespedeza species and closely related genera were reconstructed using maximum parsimony, maximum likelihood, and Bayesian analyses of sequence data from five chloroplast (rpl16, rpl32-trnL, rps16-trnQ, trnL-F, and trnK/matK) and one nuclear (ITS) DNA regions. All analyses yielded consistent relationships among major lineages. Our results suggested that Campylotropis, Kummerowia, and Lespedeza are monophyletic, respectively. Lespedeza is resolved as sister to Kummerowia and these two together are further sister to Campylotropis. Neither of the two subgenera, subgen. Lespedeza and subgen. Macrolespedeza, in Lespedeza based on morphological characters, is recovered as monophyletic. Within Lespedeza, the North American clade is retrieved as sister to the Asian clade. The nuclear and chloroplast markers showed incongruent phylogenetic signals at shallow-level phylogeny, which may point to either introgression or incomplete lineage sorting in Lespedeza. The divergence times within Lespedeza and among related genera were estimated using Bayesian approach with BEAST. It is assumed that following the divergence between Kummerowia and Lespedeza in Asia in the late Miocene, the ancestor of Lespedeza diverged into the North American and the Asian lineages. The North American ancestor quickly migrated to North America through the Bering land bridge in the late Miocene. The North American and Asian lineages started to diversify almost simultaneously in the late Miocene but resulted in biased numbers of species in two continents.  相似文献   

18.
Previous studies recognized three major lineages of the family Costaceae: a South American clade, an Asian clade and a Costus clade. However, the genus Hellenia within the Asian clade has been shown to be non-monophyletic and its morphology has not been studied carefully. Therefore, the complete plastid genomes of Hellenia species were obtained and the monophyly of Hellenia was tested through four different datasets in this study. Plastid phylogenomic analyses of Costaceae revealed that Hellenia is strongly supported as paraphyletic. Two major clades are recovered, namely the Hellenia s.s. subclade and the Parahellenia subclade. Phylogenetic analyses based on an enlarged taxon sampling of the Asian clade using a two chloroplast markers dataset (trnK intron and trnL-F spacer) confirmed the paraphyly of Hellenia. Meanwhile, morphological analyses suggested that members of the Parahellenia subclade differ from the remaining Hellenia species in many characters including inflorescences, bracts, stigma, axillary buds, floral tubes and labellum. According to the present molecular and morphological evidence, the latter subclade is recognized as a new genus, Parahellenia. Two new species are described, four new combinations are made, and identification keys are also provided.  相似文献   

19.
Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae populations.  相似文献   

20.
Aim The East Asia endemic Taiwania cryptomerioides Hayata is an iconic and relictual monotypic conifer whose main extant populations are now restricted to the Yunnan–Myanmar border, northern Vietnam and Taiwan. It has also been reported from several localities in Guizhou, Hubei and Fujian Provinces, China. Its fossil record indicates that, while it was more widely distributed in the Northern Hemisphere and grew under a range of different ecological conditions, it has remained almost unchanged in its morphology for over 100 Myr. We investigate whether these remaining extant, disjunct populations have diverged genetically; when such a divergence may have occurred; and which, if any, of the extant populations exhibit refugial characteristics. Location East Asia. Methods Sequences of five chloroplast DNA markers (petG–trnP, trnH–psbA, trnV–trnM, trnC–ycf6 and trnL–trnF) from all extant populations of T. cryptomerioides were analysed to reveal their phylogeography. Molecular clock models with fossil calibrations were used to estimate divergence times between extant populations. Results Extremely low nucleotide diversity was found in the overall population (π = 0.00077) with only nine haplotypes distinguished. The mainland Asia populations share one major ancestral haplotype. The insular populations in Taiwan all possess a unique haplotype with at least an eight‐mutational‐step difference to the mainland Asia haplotype. Molecular clock estimations demonstrated that the mean divergence time between the predominant insular population haplotype and the mainland Asia haplotype occurred at c. 3.23–3.41 Ma, followed by a split into Vietnamese and Yunnan–Myanmar populations (c. 1.0–1.39 Ma). Main conclusions Strong genetic differentiation exists between insular (Taiwan) and mainland Asia populations. The split between insular and mainland haplotypes can be dated back to the end of the Pliocene. The Yunnan–Myanmar border area, northern Vietnam and Taiwan are identified here as potential refugia for T. cryptomerioides. Other populations in mainland China are unlikely to be the result of historical fragmentation and their origins require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号