首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2015,21(6):674-685
Abbreviations: BID = bis in die DSPTC = diffuse sclerosing papillary thyroid cancer FNA = fine-needle aspiration HT = Hashimoto thyroiditis iPTH = intact parathyroid hormone 25OHD = 25-hydroxy vitamin D PTH = parathyroid hormone TPO = thyroid peroxidase US = ultrasonography  相似文献   

2.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   

3.
4.
《Endocrine practice》2016,22(6):753-762
Abbreviations:AACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyDKA = diabetic ketoacidosisEMA = European Medicines AgencyFDA = U.S. Food and Drug AdministrationSGLT-2 = sodium glucosecotransporter 2T1D = type 1 diabetesT2D = type 2 diabetes  相似文献   

5.
《Endocrine practice》2016,22(8):1008-1021
Objective/Methods: Barriers to continuous glucose monitoring (CGM) use continue to hamper adoption of this valuable technology for the management of diabetes. The American Association of Clinical Endocrinologists and the American College of Endocrinology convened a public consensus conference February 20, 2016, to review available CGM data and propose strategies for expanding CGM access.Results: Conference participants agreed that evidence supports the benefits of CGM in type 1 diabetes and that these benefits are likely to apply whenever intensive insulin therapy is used, regardless of diabetes type. CGM is likely to reduce healthcare resource utilization for acute and chronic complications, although real-world analyses are needed to confirm potential cost savings and quality of life improvements. Ongoing technological advances have improved CGM accuracy and usability, but more innovations in human factors, data delivery, reporting, and interpretation are needed to foster expanded use. The development of a standardized data report using similar metrics across all devices would facilitate clinician and patient understanding and utilization of CGM. Expanded CGM coverage by government and private payers is an urgent need.Conclusion: CGM improves glycemic control, reduces hypoglycemia, and may reduce overall costs of diabetes management. Expanding CGM coverage and utilization is likely to improve the health outcomes of people with diabetes.Abbreviations:A1C = glycated hemoglobinAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyASPIRE = Automation to Simulate Pancreatic Insulin ResponseCGM = continuous glucose monitoringHRQOL = health-related quality of lifeICER = incremental cost-effectiveness ratioJDRF = Juvenile Diabetes Research FoundationMARD = mean absolute relative differenceMDI = multiple daily injectionsQALY = quality-adjusted life yearsRCT = randomized, controlled trialSAP = sensor-augmented pumpSMBG = self-monitoring of blood glucoseSTAR = Sensor-Augmented Pump Therapy for A1C ReductionT1D = type 1 diabetesT2D = type 2 diabetes  相似文献   

6.
《Endocrine practice》2016,22(7):842-884
Objective: Development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and the American College of Endocrinology (ACE) Board of Trustees and adheres to published AACE protocols for the standardized production of clinical practice guidelines (CPGs).Methods: Recommendations are based on diligent review of clinical evidence with transparent incorporation of subjective factors.Results: There are 9 broad clinical questions with 123 recommendation numbers that include 160 specific statements (85 [53.1%] strong [Grade A], 48 [30.0%] intermediate [Grade B], and 11 [6.9%] weak [Grade C], with 16 [10.0%] based on expert opinion [Grade D]) that build a comprehensive medical care plan for obesity. There were 133 (83.1%) statements based on strong (best evidence level [BEL] 1 = 79 [49.4%]) or intermediate (BEL 2 = 54 [33.7%]) levels of scientific substantiation. There were 34 (23.6%) evidence-based recommendation grades (Grades A-C = 144) that were adjusted based on subjective factors. Among the 1,788 reference citations used in this CPG, 524 (29.3%) were based on strong (evidence level [EL] 1), 605 (33.8%) were based on intermediate (EL 2), and 308 (17.2%) were based on weak (EL 3) scientific studies, with 351 (19.6%) based on reviews and opinions (EL 4).Conclusion: The final recommendations recognize that obesity is a complex, adiposity-based chronic disease, where management targets both weight-related complications and adiposity to improve overall health and quality of life. The detailed evidence-based recommendations allow for nuanced clinical decision-making that addresses real-world medical care of patients with obesity, including screening, diagnosis, evaluation, selection of therapy, treatment goals, and individualization of care. The goal is to facilitate high-quality care of patients with obesity and provide a rational, scientific approach to management that optimizes health outcomes and safety.Abbreviations:A1C = hemoglobin A1cAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyAMA = American Medical AssociationBEL = best evidence levelBMI = body mass indexCCO = Consensus Conference on ObesityCPG = clinical practice guidelineCSS = cross-sectional studyCVD = cardiovascular diseaseEL = evidence levelFDA = Food and Drug AdministrationGERD = gastroesophageal reflux diseaseHDL-c = high-density lipoprotein cholesterolIFG = impaired fasting glucoseIGT = impaired glucose toleranceLDL-c = low-density lipoprotein cholesterolMNRCT = meta-analysis of non-randomized prospective or case-controlled trialsNE = no evidencePCOS = polycystic ovary syndromeRCT = randomized controlled trialSS = surveillance studyU.S = United States  相似文献   

7.
《Endocrine practice》2016,22(2):231-262
Abbreviations:A1C = glycated hemoglobinAGP = ambulatory glucose profileARD = absolute relative differenceBGM = blood glucose monitoringCGM = continuous glucose monitoringCMS = Centers for Medicare and Medicaid ServicesCSII = continuous subcutaneous insulin infusionCV = coefficient of variationDCCT = Diabetes Control and Complications TrialDirecNet = Diabetes Research in Children NetworkFDA = US Food & Drug AdministrationGDM = gestational diabetes mellitusGM = glucose monitoringIDF = International Diabetes FederationISO = International Organization for StandardizationMARD = mean absolute relative differenceMDI = multiple daily injectionsMedARD = median absolute relative differenceMNT = medical nutrition therapySAP = sensor-augmented pumpT1DM = type 1 diabetes mellitusT2DM = type 2 diabetes mellitus  相似文献   

8.
9.
《Endocrine practice》2019,25(11):1191-1232
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG).Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols.Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence).Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH–stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document.LAY ABSTRACTThis updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH–stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH–stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH–stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement.Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone–releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor–binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test  相似文献   

10.
《Endocrine practice》2018,24(2):220-229
Objective: High-quality dual-energy X-ray absorptiometry (DXA) scans are necessary for accurate diagnosis of osteoporosis and monitoring of therapy; however, DXA scan reports may contain errors that cause confusion about diagnosis and treatment. This American Association of Clinical Endocrinologists/American College of Endocrinology consensus statement was generated to draw attention to many common technical problems affecting DXA report conclusions and provide guidance on how to address them to ensure that patients receive appropriate osteoporosis care.Methods: The DXA Writing Committee developed a consensus based on discussion and evaluation of available literature related to osteoporosis and osteodensitometry.Results: Technical errors may include errors in scan acquisition and/or analysis, leading to incorrect diagnosis and reporting of change over time. Although the International Society for Clinical Densitometry advocates training for technologists and medical interpreters to help eliminate these problems, many lack skill in this technology. Suspicion that reports are wrong arises when clinical history is not compatible with scan interpretation (e.g., dramatic increase/decrease in a short period of time; declines in previously stable bone density after years of treatment), when different scanners are used, or when inconsistent anatomic sites are used for monitoring the response to therapy. Understanding the concept of least significant change will minimize erroneous conclusions about changes in bone density.Conclusion: Clinicians must develop the skills to differentiate technical problems, which confound reports, from real biological changes. We recommend that clinicians review actual scan images and data, instead of relying solely on the impression of the report, to pinpoint errors and accurately interpret DXA scan images.Abbreviations: AACE = American Association of Clinical Endocrinologists; BMC = bone mineral content; BMD = bone mineral density; DXA = dual-energy X-ray absorptiometry; ISCD = International Society for Clinical Densitometry; LSC = least significant change; TBS = trabecular bone score; WHO = World Health Organization  相似文献   

11.
Finishing late-maturing bulls on grass may alter the antioxidant/prooxidant balance leading to beef with higher susceptibility to lipid oxidation and a lower colour stability compared to bulls finished on cereal concentrates. In this context, lipid oxidation and colour stability of beef from late-maturing bulls finished on pasture, with or without concentrate supplements, or indoors on concentrate was assessed. Charolais or Limousin sired bulls (n = 48) were assigned to four production systems: (1) pasture only (P), (2) pasture plus 25% dietary DM intake as barley-based concentrate (PC25), (3) pasture plus 50% dietary DM intake as barley-based concentrate (PC50) or (4) a barley-based concentrate ration (C). Following slaughter and postmortem ageing, M. Longissimus thoracis et lumborum was subjected to simulated retail display (4°C, 1000 lux for 12 h out of 24 h) for 3, 7, 10 and 14 days in modified atmosphere packs (O2 : CO2; 80 : 20). Lipid oxidation was determined using the 2-thiobarbituric acid-reactive substances assay; α-tocopherol was determined by HPLC; fatty acid methyl esters were determined using Gas Chromatography. Using a randomised complete block design, treatment means were compared by either ANOVA or repeated measures ANOVA using the MIXED procedure of SAS. Total polyunsaturated fatty acid (PUFA) concentrations were not affected by treatment, n-3 PUFAs were higher (P < 0.001) and the ratio of n-6 to n-3 PUFAs was lower (P < 0.001) in muscle from P, PC25 and PC50 compared to C. α-Tocopherol concentration was higher in muscle from P compared to PC50 and C bulls (P = 0.001) and decreased (P < 0.001) in all samples by day 14. Lipid oxidation was higher in muscle from C compared to P bulls on day 10 and day 14 of storage (P < 0.01). Finishing on pasture without supplementation did not affect beef colour stability and led to lower lipid oxidation, possibly due to the higher α-tocopherol concentration compared to concentrate finished beef.  相似文献   

12.
A series of arylsulfonamide derivatives of (aryloxy)ethyl pyrrolidines and piperidines was synthesized to develop new α1-adrenoceptor antagonists with uroselective profile. Biological evaluation for α1- and α2-adrenorecepor showed that tested compounds 1337 displayed high-to-moderate affinity for the α1-adrenoceptor (Ki = 34–348 nM) and moderate selectivity over α2-receptor subtype. Compounds with highest affinity and selectivity for α1-adrenoceptor were evaluated in vitro for their intrinsic activity toward α1A- and α1B-adrenoceptor subtypes. All compounds behaved as antagonists at both α1-adrenoceptor subtypes, displaying 2- to 6-fold functional preference to α1A-subtype. Among them, N-{1-[2-(2-methoxyphenoxy)ethyl]piperidin-4-yl}isoquinoline-4-sulfonamide (25) and 3-chloro-2-fluoro-N-{[1-(2-(2-isopropoxyphenoxy)ethyl)piperidin-4-yl]methyl}benzene sulfonamide (34) displayed the highest preference to α1A-adrenoceptor. Finally, compounds 25 and 34 (2–5 mg/kg, iv), in contrast to tamsulosin (1–2 mg/kg, iv), did not significantly decrease systolic and diastolic blood pressure in normotensive anesthetized rats to determine their influence on blood pressure.  相似文献   

13.
14.
《Endocrine practice》2016,22(4):476-501
The American Association of Clinical Endocrinologists (AACE) and American College of Endocrinology (ACE) convened their first Workshop for recommendations to optimize Clinical Practice Algorithm (CPA) development for Latin America (LA) in diabetes (focusing on glycemic control), obesity (focusing on weight loss), thyroid (focusing on thyroid nodule diagnostics), and bone (focusing on postmenopausal osteoporosis) on February 28, 2015, in San Jose, Costa Rica. A standardized methodology is presented incorporating various transculturalization factors: resource availability (including imaging equipment and approved pharmaceuticals), health care professional and patient preferences, lifestyle variables, socio-economic parameters, web-based global accessibility, electronic implementation, and need for validation protocols. A standardized CPA template with node-specific recommendations to assist the local transculturalization process is provided. Participants unanimously agreed on the following five overarching principles for LA: (1) there is only one level of optimal endocrine care, (2) hemoglobin A1C should be utilized at every level of diabetes care, (3) nutrition education and increased pharmaceutical options are necessary to optimize the obesity care model, (4) quality neck ultrasound must be part of an optimal thyroid nodule care model, and (5) more scientific evidence is needed on osteoporosis prevalence and cost to justify intervention by governmental health care authorities. This 2015 AACE/ACE Workshop marks the beginning of a structured activity that assists local experts in creating culturally sensitive, evidence-based, and easy-to-implement tools for optimizing endocrine care on a global scale.Abbreviations:A1C = glycated hemoglobinAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyBG = blood glucoseBMI = body mass indexCPA = Clinical Practice AlgorithmCPG = Clinical Practice GuidelineCVD = cardiovascular diseaseDXA = dual-energy X-ray absorptiometryEDC = endocrine-disrupting compoundFBG = fasting blood glucoseFNA = fine-needle aspirationHCP = health care professionalLA = Latin AmericaPAACE = Pan-American AACESU = sulfonylureaT2D = type 2 diabetestDNA = transcultural Diabetes Nutrition AlgorithmTSH = thyroid-stimulating hormoneWC = waist circumferenceWHO = World Health Organization  相似文献   

15.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

16.
In the ongoing research to find new diabetes constituents from the genus Wedelia, the chemical constituent of Wedelia trilobata leaves, a Vietnamese medicinal plant species used to treat type 2 diabetes mellitus, was selected for detailed investigation. From a methanolic extract, two new ent-kaurane diterpenoids, wedtrilosides A and B (1 and 2), along with five known metabolites (37), were isolated from W. trilobata. The chemical structures of (17) were assigned via spectroscopic techniques (IR, 1D, 2D NMR and HR-QTOF-MS data) and chemical methods. The isolates were evaluated for α-amylase and α-glucosidase inhibitory activities compared to the clinical drug acarbose. Among them, compounds 4, 6, and 7 showed the most potent against α-glucosidase enzyme with IC50 values of 27.54 ± 1.12, 173.78 ± 2.37, and 190.40 ± 2.01 μg/mL. While moderate inhibitory effect against α-amylase was observed with compounds 6 and 7 (with IC50 = 181.97 ± 2.62 and 52.08 ± 0.56 μg/mL, respectively). The results suggested that the antidiabetic properties from the leaves of W. trilobata are not simply a result of each isolated compound, but are due to other factors such as the accessibility of polyphenolic groups to α-amylase and α-glucosidase activities.  相似文献   

17.
《Endocrine practice》2017,23(4):479-497
Objective: The development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs).Methods: Each Recommendation is based on a diligent review of the clinical evidence with transparent incorporation of subjective factors.Results: The Executive Summary of this document contains 87 Recommendations of which 45 are Grade A (51.7%), 18 are Grade B (20.7%), 15 are Grade C (17.2%), and 9 (10.3%) are Grade D. These detailed, evidence-based recommendations allow for nuance-based clinical decision making that addresses multiple aspects of real-world medical care. The evidence base presented in the subsequent Appendix provides relevant supporting information for Executive Summary Recommendations. This update contains 695 citations of which 202 (29.1 %) are evidence level (EL) 1 (strong), 137 (19.7%) are EL 2 (intermediate), 119 (17.1%) are EL 3 (weak), and 237 (34.1%) are EL 4 (no clinical evidence).Conclusion: This CPG is a practical tool that endocrinologists, other healthcare professionals, regulatory bodies and health-related organizations can use to reduce the risks and consequences of dyslipidemia. It provides guidance on screening, risk assessment, and treatment recommendations for a range of patients with various lipid disorders. These recommendations emphasize the importance of treating low-density lipoprotein cholesterol (LDL-C) in some individuals to lower goals than previously recommended and support the measurement of coronary artery calcium scores and inflammatory markers to help stratify risk. Special consideration is given to patients with diabetes, familial hypercholesterolemia, women, and pediatric patients with dyslipidemia. Both clinical and cost-effectiveness data are provided to support treatment decisions.AbbreviationsA1C = hemoglobin A1CACE = American College of EndocrinologyACS = acute coronary syndromeAHA = American Heart AssociationASCVD = atherosclerotic cardiovascular diseaseATP = Adult Treatment Panelapo = apolipoproteinBEL = best evidence levelCKD = chronic kidney diseaseCPG = clinical practice guidelinesCVA = cerebrovascular accidentEL = evidence levelFH = familial hypercholesterolemiaHDL-C = high-density lipoprotein cholesterolHeFH = heterozygous familial hypercholesterolemiaHIV = human immunodeficiency virusHoFH = homozygous familial hypercholesterolemiahsCRP = high-sensitivity C-reactive proteinLDL-C = low-density lipoprotein cholesterolLp-PLA2 = lipoprotein-associated phospholipase A2MESA = Multi-Ethnic Study of AtherosclerosisMetS = metabolic syndromeMI = myocardial infarctionNCEP = National Cholesterol Education ProgramPCOS = polycystic ovary syndromePCSK9 = proprotein convertase subtilisin/kexin type 9T1DM = type 1 diabetes mellitusT2DM = type 2 diabetes mellitusTG = triglyceridesVLDL-C = very low-density lipoprotein cholesterol  相似文献   

18.
《Endocrine practice》2013,19(1):73-80
ObjectiveTo examine whether (1) serum 25-hydroxy- vitamin D level (25[OH]D) is a risk factor for hyperglycemia, as assessed by glycated hemoglobin (HbA1c), in African American men (AAM) and (2) 25(OH)D is a predictor of HbA1c in AAM and Caucasian American men (CAM).MethodsWe prospectively assessed 25(OH)D and HbA1c in 1,074 men, outpatients with and without diabetes, at an urban Veteran Administration Medical Center (66.8% AAM, 26.4% CAM, 6% Hispanic, 0.4% Asian, and 0.4% Native American men). Multivariate regression analyzed the determinants of HbA1c after accounting for potential confounders.ResultsWe found high prevalence of low (< 30 ng/mL) 25(OH)D (81%) and elevated (≥5.7%) HbAlc (53.5%). The 25(OH)D was inversely associated with HbA1c in all men (r = −0.12, P<.001), in AAM (r = −0.11, P = .003), and in CAM (r = −0.15, P = .01). In the entire group the independent determinants of HbA1c included body mass index (BMI), age, 25(OH)D levels, systolic blood pressure (BP), triglycerides, high-density lipoprotein (HDL), and current alcohol use (P<.0001, .013, .009, .01, .008, .034, and .048, respectively) while glomerular filtration rate (GFR) and marital status showed borderline significance (P = .08 and .09, respectively). In AAM these determinants included BMI, 25(OH)D levels, systolic BP, and current alcohol use (P<.0001, .01, .02, and .03, respectively), while age had borderline significance (P = .06). In CAM, these included BMI, age, and triglycerides (P = .01, .03, and .004, respectively) but not 25(OH)D levels (P = .50).ConclusionCirculating low 25(OH)D is a risk factor for hyperglycemia, as assessed by HbA1c, in AAM. The 25(OH)D level is an independent determinant of HbA1c in AAM, but not in CAM, including men with and without diabetes. (Endocr Pract. 2013;19:73-80)  相似文献   

19.
《Endocrine practice》2019,25(7):657-662
Objective: A previous Trinidadian survey highlighted the investigative and therapeutic approaches selected by general practitioners (GPs) in managing thyrotoxicosis. The main objective of this study was to compare practice with existing guidelines.Methods: In this cross-sectional study a pretested de novo questionnaire was self-administered to GPs throughout Trinidad. The survey evaluated GPs' choices in management of thyrotoxicosis cases and compared their responses to the 2016 American Thyroid Association guidelines as well as with those previously reported locally.Results: A total of 159 completed questionnaires were analyzed (59% response rate). Thyroid stimulating hormone was the preferred (94%) biochemical test to confirm thyrotoxicosis etiology. A combination of ultra-sound and thyroid scintigraphy, thyroid ultrasound alone, and scintigraphy only were the testing options selected by 41%, 38%, and 12%, respectively. Generally medical therapy with antithyroid drugs was the preferred treatment option with 86% of respondents selecting this option for the index case of newly diagnosed female Graves disease. The greatest proportion of respondents that selected radioactive iodine (RAI) was 35% for both the index case as well as the male equivalent. Surgery was the most popular option at 25% for patients with a toxic multinodular goiter. Having access to RAI and scintigraphy was reported by 32% and 28%, respectively.Conclusion: GPs appear to be constrained to making rational choices based upon availability rather than what the guidelines recommend. In the absence of formal continuing medical education for GPs on thyrotoxicosis, dissemination of guidelines at the primary care level may reduce this gap.Abbreviations: ATA = American Thyroid Association; ATD = antithyroid drugs; CME = continued medical education; GP = general practitioner; RAI = radioactive iodine; SURG = surgery; T4 = thyroxine; TSH = thyroid-stimulating hormone  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号