首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The deregulation of miR-101 and DNMT3a has been implicated in the pathogenesis of multiple tumor types, but whether and how miR-101 silencing and DNMT3a overexpression contribute to lung tumorigenesis remain elusive. Here we show that miR-101 downregulation associates with DNMT3a overexpression in lung cancer cell lines and patient tissues. Ectopic miR-101 expression remarkably abrogated the DNMT3a 3′-UTR luciferase activity corresponding to the miR-101 binding site and caused an attenuated expression of endogenous DNMT3a, which led to a reduction of global DNA methylation and the re-expression of tumor suppressor CDH1 via its promoter DNA hypomethylation. Functionally, restoration of miR-101 expression suppressed lung cancer cell clonability and migration, which recapitulated the DNMT3a knockdown effects. Interestingly, miR-101 synergized with decitabine to downregulate DNMT3a and to reduce DNA methylation. Importantly, ectopic miR-101 expression was sufficient to trigger in vivo lung tumor regression and the blockage of metastasis. Consistent with these phenotypes, examination of xenograft tumors disclosed an increase of miR-101, a decrease of DNMT3a and the subsequent DNA demethylation. These findings support that the loss or suppression of miR-101 function accelerates lung tumorigenesis through DNMT3a-dependent DNA methylation, and suggest that miR-101-DNMT3a axis may have therapeutic value in treating refractory lung cancer.Owing to a high propensity for recurrence and a high rate of metastasis at the advanced stages,1, 2, 3 lung cancer remains the leading cause of cancer-related mortality. DNA methylation is a major epigenetic rule controlling chromosomal stability and gene expression.4, 5 It is under control of DNA methyltransferases (DNMTs), whose overexpression in lung cancer cells predicts worse outcomes.6, 7 It is postulated that DNMT overexpression induces DNA hypermethylation and silencing of tumor suppressor genes (TSGs), leading to an aggressive lung cancer. Indeed, enforced expression of DNMT1 or DNMT3a increases DNA methylation, while the abolition of DNMT expression by genetic depletion, microRNAs (miRs) or small molecules reduces genome-wide and gene-specific DNA methylation and restores TSG expression.8, 9, 10, 11, 12, 13 As TSGs are the master controllers for cell multiplicity and their silencing predicts poor prognosis,14, 15 TSG re-expression via promoter DNA hypomethylation inhibits cell proliferation and induces cell differentiation.13, 16 Thus, DNMT gene abundance could serve as a target for anticancer therapy, but how DNMT upregulation occurs in lung cancer is incompletely understood.MiRs are small non-coding RNAs that crucially regulate target gene expression. Up to 30% of all protein-coding genes are predicted to be targeted by miRs,17, 18 supporting the key roles of miRs in controlling cell fate.19, 20, 21, 22 Research is showing that certain miRs are frequently dysregulated in cancers, including lung cancer.7, 23, 24 As miR targets can promote or inhibit cancer cell expansion, miRs have huge potential for acting as bona fide oncogenes (i.e., miR-21) or TSGs (i.e., miR-29b).7, 25 We and others demonstrated that the levels of DNMT1 or DNMT3a or DNMT3b are regulated by miR-29b, miR-148, miR-152 or miR-30c,7, 13, 26, 27 and overexpression of these miRs results in DNA hypomethylation and TSG reactivation with the concurrent blockage of cancer cell proliferation.7, 13 These findings underscore the importance of miRs as epigenetic modulators and highlight their therapeutic applications.MiR-101 is frequently silenced in human cancers28, 29, 30, 31 and, importantly, exhibits antitumorigenic properties when overexpressed. Mechanistically, miR-101 inactivation by genomic loss causes the overexpression of EZH2, a histone methyltransferase, via 3′-UTR targeting, which is followed by histone hypermethylation and aggressive tumorigenesis.29, 30, 32 However, whether and how miR-101 silencing contributes to DNA hypermethylation patterning in lung cancer is unclear. In this study, we explore the role of miR-101 in regulating DNMT3a expression and the impacts of miR-101-DNMT3a nexus on lung cancer pathogenesis. We showed that the expression of miR-101 and DNMT3a was negatively correlated in lung cancer. We presented evidence that ectopic miR-101 expression decreased DNMT3a levels, reduced global DNA methylation and upregulated CDH1 via its promoter DNA demethylation. The biological significance of miR-101-mediated DNA hypomethylation and CDH1 re-expression was evident by its inhibition of lung tumor cell growth in vitro and in vivo. Thus, our findings mechanistically and functionally link miR-101 silencing to DNA hypermethylation in lung cancer cells.  相似文献   

8.
9.
10.
MicroRNAs have crucial roles in lung cancer cell development. They regulate cell growth, proliferation and migration by mediating the expression of tumor suppressor genes and oncogenes. We identified and characterized the novel miR-9500 in human lung cancer cells. The miR-9500 forms a stem-loop structure and is conserved in other mammals. The expression levels of miR-9500 were reduced in lung cancer cells and lung cancer tissues compared with normal tissues, as verified by TaqMan miRNA assays. It was confirmed that the putative target gene, Akt1, was directly suppressed by miR-9500, as demonstrated by a luciferase reporter assay. The miR-9500 significantly repressed the protein expression levels of Akt1, as demonstrated via western blot, but did not affect the corresponding mRNA levels. Akt1 has an important role in lung carcinogenesis, and depletion of Akt1 has been shown to have antiproliferative and anti-migratory effects in previous studies. In the current study, the overexpression of miR-9500 inhibited cell proliferation and the expression of cell cycle-related proteins. Likewise, the overexpression of miR-9500 impeded cell migration in human lung cancer cells. In an in vivo assay, miR-9500 significantly suppressed Fluc expression compared with NC and ASO-miR-9500, suggesting that cell proliferation was inhibited in nude mice. Likewise, miR-9500 repressed tumorigenesis and metastasis by targeting Akt1. These data indicate that miR-9500 might be applicable for lung cancer therapy.MicroRNAs (miRNAs) are small, non-coding RNAs, 18–25 nucleotides (nt) in length that regulate gene expression by binding to the 3′-untranslated region (UTR) of their target genes,1, 2 and these RNAs are processed from introns, exons or intergenic regions.3 First, miRNAs are transcribed by RNA polymerase II into primary miRNA (pri-miRNA) molecules that contain several thousand nucleotides. The pri-miRNAs are then sequentially processed by a microprocessor, such as Drosha RNase III endonuclease and DiGeorge syndrome region gene 8 protein (DGCR8), to form ∼70 nt-stem-loop intermediates known as miRNA precursors (pre-miRNAs).4, 5 The pre-miRNAs are then exported from the nucleus into the cytoplasm via Exportin-5 (EXP5), with its cofactor Ran-GTP; in the cytoplasm, these pre-miRNAs are processed into 18–25 nt mature miRNA duplexes by the RNase III endonuclease Dicer.6, 7 The mature miRNA duplexes, along with the Argonaute proteins, are integrated as single-stranded RNAs into an RNA-induced silencing complex, which induces either the cleavage or the translational inhibition of the targeted mRNAs.8, 9, 10 miRNAs have been implicated in a variety of biological processes associated with cancer development, including cell proliferation and invasion,11 and miRNA expression is deregulated in many forms of cancer.12Cancer is a major public health problem worldwide. Lung cancer represents one of the most predominant types of cancer, with high mortality rates in both men and women. Epithelial lung cancer can be categorized into one of two types: small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC accounts for ∼80% of lung cancer cases, and these cases can be further categorized as adenocarcinoma (40%), squamous cell carcinoma (30–35%), and large cell carcinoma (5–15%). NSCLC has a 5-year survival rate of only 16%.13, 14, 15 Current studies have shown that miRNAs are deregulated in various cancers, including NSCLC, and may act as oncogenes or tumor suppressor genes.16 For example, the Let-7 family,17 miR-15a/16,18 miR-17-92,19 miR-107 and miR-185,20 are deregulated in lung cancer.Some studies have reported that phosphatidylinositol 3-kinase (PI3K) signaling is activated in human cancers21, 22 and has an important role in the progression of NSCLC. The PI3K pathway modulates several cellular mechanisms, such as cell survival, proliferation, migration and motility, and thereby significantly affects the growth of tumors.23, 24 The primary regulator of the PI3K pathway is Akt, a protein kinase B that mediates cell survival, cell death,25 cell growth, cell migration and angiogenesis.26, 27, 28 The silencing of the Akt1 gene has been shown to inhibit the proliferation of gastric cancer cells both in vitro and in vivo.29 Other studies have shown that aberrant AKT activation has a critical role in tumorigenesis.30In this study, we identified small RNAs in lung cancer cells. To analyze a novel miRNA signature, we examined the structure and sequence of the small RNAs, analyzed the expression patterns of the novel miRNAs in lung cancer tissues and assessed the miRNA target genes. Our data revealed that miR-9500 regulates certain human lung cancer cell functions, including cell growth, proliferation, and migration.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Emerging evidences suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction (MI) and heart failure. However, the molecular components regulating mitochondrial network in the heart remain largely unidentified. Here we report that miR-361 and prohibitin 1 (PHB1) constitute an axis that regulates mitochondrial fission and apoptosis. The results show that PHB1 attenuates mitochondrial fission and apoptosis in response to hydrogen peroxide treatment in cardiomyocytes. Cardiac-specific PHB1 transgenic mice show reduced mitochondrial fission and myocardial infarction sizes after myocardial infarction surgery. MiR-361 is responsible for the dysfunction of PHB1 and suppresses the translation of PHB1. Knockdown of miR-361 reduces mitochondrial fission and apoptosis in vivo and in vitro. MiR-361 cardiac-specific transgenic mice represent elevated mitochondrial fission and myocardial infarction sizes upon myocardial ischemia injury. This study identifies a novel signaling pathway composed of miR-361 and PHB1 that regulates mitochondrial fission program and apoptosis. This discovery will shed new light on the therapy of myocardial infarction and heart failure.The heart drives the blood flow in the body and it has a large requirement of energy. Mitochondria meet the high energy demand of the heart by consistently providing large amounts of ATP through oxidative phosphorylation. Thus, mitochondrial malfunction is tightly related to cardiac diseases and contributes to cardiomyocyte injury, cardiomyopathy and heart failure. Mitochondria morphology is also associated with the function. Mitochondria constantly undergo fission and fusion. Fission leads to the formation of small round mitochondria and promotes cell apoptosis,1, 2, 3, 4, 5, 6, 7 whereas fusion results in mitochondria elongation and have a protective role in cardiomyocytes maintenance.8 The above findings strongly suggest that mitochondrial fission and fusion machinery is important for cardiac function. In addition, unveiling the mechanism of mitochondrial network regulation will provide a novel therapeutic strategy for heart failure.The mitochondrial prohibitin complex is a macromolecular structure at the inner mitochondrial membrane that is composed of prohibitin 1 (PHB1) and prohibitin 2 subunits.9 These two proteins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins and are implicated in several important cellular processes such as mitochondrial biogenesis and function, cell proliferation, replicative senescence, and cell death.10, 11 The first mammalian PHB1 was identified as a potential tumor suppressor with anti-proliferative activity.12 Recent findings suggest that PHB1 has an important role in regulating mitochondrial morphology. Loss of PHB1 results in accumulation of fragmented mitochondria in MEFs and HeLa cells.13, 14 However, it is not yet clear whether PHB1 participates in the regulation of mitochondrial dynamics in cardiomyocytes.MicroRNAs (miRNAs) are a class of short single-stranded non-coding endogenous RNAs and act as negative regulators of gene expression by inhibiting mRNA translation or promoting mRNA degradation.15, 16 Although the function of miRNAs has been widely studied in apoptosis, development, differentiation and proliferation, few works have been focused on miRNAs in the mitochondrial network regulation. It has been reported that miR-30b targets to p53 and inhibits mitochondrial fission.17 In addition, other miRNAs also affect the function of mitochondria by targeting to mitochondrial calcium uniporter.18 The study of miRNA function in mitochondria may shed new light on the machinery that underlies mitochondrial regulation.This study unveils that PHB1 is involved in the regulation of mitochondrial network in cardiomyocytes. PHB1 inhibits mitochondrial fission and apoptosis in cardiomyocytes. In addition, PHB1 transgenic mice exhibit a reduced myocardial infarction sizes upon myocardial ischemia injury in vivo. In searching for the mechanism by which PHB1 is downregulated under pathologic condition, we identify miR-361 participates in the suppression of PHB1 translation. MiR-361 initiates mitochondrial fission, apoptosis and myocardial infarction through downregulating PHB1. Our results reveal a novel mitochondrial regulating model, which is composed of miR-361 and PHB1. Modulation of their levels may represent a novel approach for interventional treatment of myocardial infarction and heart failure.  相似文献   

19.
20.
Drug resistance is one of the major hurdles for cancer treatment. However, the underlying mechanisms are still largely unknown and therapeutic options remain limited. In this study, we show that microRNA (miR)-587 confers resistance to 5-fluorouracil (5-FU)-induced apoptosis in vitro and reduces the potency of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-587 modulates drug resistance through downregulation of expression of PPP2R1B, a regulatory subunit of the PP2A complex, which negatively regulates AKT activation. Knockdown of PPP2R1B expression increases AKT phosphorylation, which leads to elevated XIAP expression and enhanced 5-FU resistance; whereas rescue of PPP2R1B expression in miR-587-expressing cells decreases AKT phosphorylation/XIAP expression, re-sensitizing colon cancer cells to 5-FU-induced apoptosis. Moreover, a specific and potent AKT inhibitor, MK2206, reverses miR-587-conferred 5-FU resistance. Importantly, studies of colorectal cancer specimens indicate that the expression of miR-587 and PPP2R1B positively and inversely correlates with chemoresistance, respectively, in colorectal cancer. These findings indicate that the miR-587/PPP2R1B/pAKT/XIAP signaling axis has an important role in mediating response to chemotherapy in colorectal cancer. A major implication of our study is that inhibition of miR-587 or restoration of PPP2R1B expression may have significant therapeutic potential to overcome drug resistance in colorectal cancer patients and that the combined use of an AKT inhibitor with 5-FU may increase efficacy in colorectal cancer treatment.Colorectal cancer is the third most common cancer and the second leading cause of cancer-related mortality in the US. 5-Fluorouracil (5-FU) is one of the chemotherapeutic drugs most widely used alone or combined with other drugs in colorectal cancer treatment.1 5-FU primarily interrupts synthesis of the pyrimidine thymidine, a nucleoside required for DNA replication, by blocking the activity of thymidylate synthase.2 Consequently, 5-FU induces cell cycle arrest and/or apoptosis in cancer cells. Although adjuvant 5-FU treatment has yielded a good success rate, the failure of treatment in over 90% of patients with metastatic cancer is due to drug resistance.3 Many mechanisms have been suggested to be responsible for drug resistance, including blocking apoptosis.2, 4, 5, 6 Although resistance to chemotherapy is one of the biggest obstacles for effective cancer therapy, no significant advance has been made to identify targets overcoming drug resistance.7MicroRNAs (miRNAs) are a class of small (about 22 bps) non-coding regulatory RNA molecules, which regulate gene expression primarily by binding to the 3′-UTRs of their target mRNAs to initiate sequence-specific mRNA cleavage or to inhibit translation.8 It is estimated that more than one-third of human genes and the majority of genetic pathways are regulated by miRNAs.9 MiRNAs have been virtually linked to all known biological processes as well as various pathological diseases including cancer.10 Alternations in miRNA expression have been associated with many human cancers.11, 12 The pleiotropic nature of gene regulation by miRNAs implies that some miRNAs may function as crucial mediators of drug resistance. In fact, miRNA-based anticancer therapies are being developed, either alone or in combination with targeted therapies, with the goal to improve disease response and increase patient survival.13The protein kinase B (AKT/PKB) kinases, including AKT1, AKT2 and AKT3, are essential regulators of various signaling pathways and cellular processes.14 Hyper-activation of AKT kinases have been frequently observed in human cancers.15 Activation of AKT requires both translocation to the plasma membrane and phosphorylation at Thr308 and Ser473.16, 17 Further studies have demonstrated that Thr308 phosphorylation is necessary and sufficient for AKT activation18 and that dephosphorylation at Thr308 alone leads to deactivation of AKT.19, 20 X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis proteins (IAPs) family and has a significant role in cell survival by modulating death-signaling pathways at a post-mitochondrial level.21, 22 Studies have shown that AKT activation can enhance the protein stability of XIAP, therefore elevating XIAP expression.23, 24, 25 Consequently, AKT has been shown to promote cell survival through the XIAP-mediated anti-apoptotic pathway.26The serine/threonine protein phosphatase 2 A (PP2A) holoenzyme is composed of a catalytic C subunit, a structural A subunit and a regulatory B subunit. PPP2R1B or PP2A A subunit beta isoform (PP2A-Aβ) is a constant regulatory subunit of PP2A required to activate PP2A. PPP2R1B was initially characterized as a tumor suppressor. It is located at a chromosomal region (11q23) frequently deleted in human cancers.27 Its mutations and alterations have been found in colorectal and other cancers.28, 29 Cancer-associated mutants of PPP2R1B have been shown to be incompetent to bind the B and/or C subunits in vitro, resulting in PP2A inactivation.30, 31 PP2A regulates numerous signaling pathways. Specifically, PP2A has an important role in regulating AKT activity by dephosphorylating AKT at Thr308 and Ser473, leading to AKT inactivation.19, 32, 33, 34In this study, we have discovered a novel miR-587/PPP2R1B (PP2A)/pAKT/XIAP signaling axis that mediates the response of colon cancer cells to 5-FU treatment. Our results show that miR-587 expression is suppressed by 5-FU treatment in the sensitive but not resistant colon cancer cells. MiR-587 confers resistance to 5-FU-induced apoptosis through the inhibition of PPP2R1B expression, which is a direct target of miR-587. Knockdown of PPP2R1B by siRNAs confers 5-FU resistance in colon cancer cells, mimicking miR-587 effect. Inhibition of miR-587 expression or rescue of PPP2R1B expression in colon cancer cells increases their sensitivity to 5-FU treatment. Additionally, an AKT inhibitor, MK-2206, re-sensitizes miR-587-expressing cells to 5-FU treatment. Moreover, experiments in tumor xenograft mouse models reveal that miR-587 significantly reduces the effectiveness of 5-FU in the inhibition of tumor growth in vivo. Importantly, studies of colorectal cancer specimens indicate a positive correlation between miR-587 expression and chemoresistance and an inverse correlation between PPP2R1B expression and drug resistance. Our studies have identified miR-587 as a potential target for drug resistance in colorectal cancer and suggested that modulating the PPP2R1B (PP2A)/pAKT/XIAP axis may have benefits against drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号