首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.

Background

The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.

Results

The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes.

Conclusions

The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
13.
14.
15.

Background

Brassica napus is the third leading source of vegetable oil in the world after soybean and oil palm. The accumulation of gene sequences, especially expressed sequence tags (ESTs) from plant cDNA libraries, has provided a rich resource for genes discovery including potential antimicrobial peptides (AMPs). In this study, we used ESTs including those generated from B. napus cDNA libraries of seeds, pathogen-challenged leaves and deposited in the public databases, as a model, to perform in silico identification and consequently in vitro confirmation of putative AMP activities through a highly efficient system of recombinant AMP prokaryotic expression.

Results

In total, 35,788 were generated from cDNA libraries of pathogen-challenged leaves and 187,272 ESTs from seeds of B. napus, and the 644,998 ESTs of B. napus were downloaded from the EST database of PlantGDB. They formed 201,200 unigenes. First, all the known AMPs from the AMP databank (APD2 database) were individually queried against all the unigenes using the BLASTX program. A total of 972 unigenes that matched the 27 known AMP sequences in APD2 database were extracted and annotated using Blast2GO program. Among these unigenes, 237 unigenes from B. napus pathogen-challenged leaves had the highest ratio (1.15 %) in this unigene dataset, which is 13 times that of the unigene datasets of B. napus seeds (0.09 %) and 2.3 times that of the public EST dataset. About 87 % of each EST library was lipid-transfer protein (LTP) (32 % of total unigenes), defensin, histone, endochitinase, and gibberellin-regulated proteins. The most abundant unigenes in the leaf library were endochitinase and defensin, and LTP and histone in the pub EST library. After masking of the repeat sequence, 606 peptides that were orthologous matched to different AMP families were found. The phylogeny and conserved structural motifs of seven AMPs families were also analysed. To investigate the antimicrobial activities of the predicted peptides, 31 potential AMP genes belonging to different AMP families were selected to test their antimicrobial activities after bioinformatics identification. The AMP genes were all optimized according to Escherichia coli codon usage and synthetized through one-step polymerase chain reaction method. The results showed that 28 recombinant AMPs displayed expected antimicrobial activities against E. coli and Micrococcus luteus and Sclerotinia sclerotiorum strains.

Conclusion

The study not only significantly expanded the number of known/predicted peptides, but also contributed to long-term plant genetic improvement for increased resistance to diverse pathogens of B.napus. These results proved that the high-throughput method developed that combined an in silico procedure with a recombinant AMP prokaryotic expression system is considerably efficient for identification of new AMPs from genome or EST sequence databases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1849-x) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号