首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

2.
3.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

4.
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell–cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.Cell–cell adhesions are involved in a diverse range of physiological processes, including morphological changes during tissue development, cell scattering, wound healing, and synaptogenesis (Adams and Nelson 1998; Gumbiner 2000; Halbleib and Nelson 2006; Takeichi 1995; Tepass et al. 2000). In epithelial cells, cell–cell adhesions are classified into three kinds of adhesions: adherens junction, tight junction, and desmosome (for more details, see Meng and Takeichi 2009, Furuse 2009, and Delva et al. 2009, respectively). A key event in epithelial polarization and biogenesis is the establishment of cadherin-dependent cell–cell contacts. Cadherins belong to a large family of adhesion molecules that require Ca2+ for their homophilic interactions (Adams and Nelson 1998; Blanpain and Fuchs 2009; Gumbiner 2000; Hartsock and Nelson 2008; Takeichi 1995; Tepass et al. 2000). Cadherins form transinteraction on the surface of neighboring cells (for details, see Shapiro and Weis 2009). For the development of strong and rigid adhesions, cadherins are clustered concomitantly with changes in the organization of the actin cytoskeleton (Tsukita et al. 1992). Classical cadherins are required, but not sufficient, to initiate cell–cell contacts, and other adhesion protein complexes subsequently assemble (for details, see Green et al. 2009). These complexes include the tight junction, which controls paracellular permeability, and desmosomes, which support the structural continuum of epithelial cells. A fundamental problem is to understand how these diverse cellular processes are regulated and coordinated. Intracellular signals, generated when cells attach with one another, mediate these complicated processes.Several signaling pathways upstream or downstream of cadherin-mediated cell–cell adhesions have been identified (Perez-Moreno et al. 2003) (see also McCrea et al. 2009). Among these pathways, small GTPases including the Rho and Ras family GTPases play critical roles in epithelial biogenesis and have been studied extensively. Many key morphological and functional changes are induced when these small GTPases act at epithelial junctions, where they mediate an interplay between cell–cell adhesion molecules and fundamental cellular processes including cytoskeletal activity, polarity, and vesicle trafficking. In addition to these small GTPases, Ca2+ signaling and phosphorylation of cadherin complexes also play pivotal roles in the formation and maintenance of cadherin-mediated adhesions. Here, we focus on signaling pathways involving the small GTPases in E-cadherin-mediated cell–cell adhesions. Other signaling pathways are described in recent reviews (Braga 2002; Fukata and Kaibuchi 2001; Goldstein and Macara 2007; McLachlan et al. 2007; Tsukita et al. 2008; Yap and Kovacs 2003; see also McCrea et al. 2009).  相似文献   

5.
The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a “switch-of-function,” thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.Immune cells undergo differentiation and, once mature, are activated through the integrated actions of many molecules, including cell surface receptors and intracellular signaling effectors. Whereas some of these molecules have “primary” roles in the immune response, others have secondary, albeit still critical, functions in this process. For example, differentiation and activation of B cells are strictly dependent on the function of the B-cell receptor (BCR) and its intracellular effectors. Other receptors present on B cells, such as CD19 and CD40, influence B-cell functions in critical ways, by modulating BCR-triggered signals (Cambier et al. 1994).There is accumulating evidence that the signaling lymphocytic activation molecule (SLAM) family of receptors plays important roles in immunity (Schwartzberg et al. 2009; Ma et al. 2007; Veillette et al. 2007; Veillette 2006b; Veillette 2006a). This class of receptors provides key effects in multiple immune cell types. Recent data indicate that SLAM-family receptors can either promote or inhibit the functions of primary activating receptors (Cruz-Munoz et al. 2009; Dong et al. 2009). These alternative activities are controlled by whether or not SLAM-related receptors are coexpressed with members of the SLAM-associated protein (SAP) family of intracellular adaptor molecules. The functions and mechanisms of action of the SLAM and SAP families are reviewed herein.  相似文献   

6.
Epithelial cell–cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell–cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell–cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell–cell junctions.Cell–cell junction formation and remodeling occur repeatedly throughout development. Epithelial cells are linked by apical adherens junctions (AJs) that rely on the cadherin-catenin-actin module. Cadherins, of which epithelial E-cadherin (E-cad) is the most studied, are Ca2+-dependent transmembrane adhesion proteins forming homophilic and heterophilic bonds in trans between adjacent cells. Cadherins and the actin cytoskeleton are mutually interdependent (Jaffe et al. 1990; Matsuzaki et al. 1990; Hirano et al. 1992; Oyama et al. 1994; Angres et al. 1996; Orsulic and Peifer 1996; Adams et al. 1998; Zhang et al. 2005; Pilot et al. 2006). This has long been attributed to direct physical interaction of E-cad with β-catenin (β-cat) and of α-catenin (α-cat) with actin filaments (for reviews, see Gumbiner 2005; Leckband and Prakasam 2006; Pokutta and Weis 2007). Recently, biochemical and protein dynamics analyses have shown that such a link may not exist and that instead, a constant shuttling of α-cat between cadherin/β-cat complexes and actin may be key to explain the dynamic aspect of cell–cell adhesion (Drees et al. 2005; Yamada et al. 2005). Regardless of the exact nature of this link, several studies show that AJs are indeed physically attached to actin and that cadherins transmit cortical forces exerted by junctional acto-myosin networks (Costa et al. 1998; Sako et al. 1998; Pettitt et al. 2003; Dawes-Hoang et al. 2005; Cavey et al. 2008; Martin et al. 2008; Rauzi et al. 2008). In addition, physical association depends in part on α-cat (Cavey et al. 2008) and additional intermediates have been proposed to represent alternative missing links (Abe and Takeichi 2008) (reviewed in Gates and Peifer 2005; Weis and Nelson 2006). Although further work is needed to address the molecular nature of cadherin/actin dynamic interactions, association with actin is crucial all throughout the lifespan of AJs. In this article, we will review our current understanding of the molecular mechanisms at work during three different developmental stages of AJs biology: assembly, stabilization, and remodeling, with special emphasis on the mechanical forces controlling AJs integrity and development.  相似文献   

7.
8.
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.Since the presence of dividing cells in the mostly postmitotic adult brain was first described (Altman and Das 1965), the generation of new neurons in adulthood has been proposed to be involved in a variety of behaviors (Doetsch and Hen 2005; Becker and Wojtowicz 2007; Sahay and Hen 2007; Deng et al. 2010; Ming and Song 2011; Miller and Hen 2014). Adult neurogenesis in the healthy mammalian brain is consistently seen in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Recent studies have implicated hippocampal neurogenesis in learning- and memory-related tasks, such as contextual discrimination and spatial navigation and, specifically, in behavioral pattern separation (Clelland et al. 2009; Sahay et al. 2011; Nakashiba et al. 2012; Niibori et al. 2012; see also reviews in Deng et al. 2010; Ming and Song 2011; Marin-Burgin and Schinder 2012), but also in some behavioral effects of antidepressants (Santarelli et al. 2003; see also reviews in Sahay and Hen 2007; Kheirbek et al. 2012; Tanti and Belzung 2013). However, the exact role of adult hippocampal neurogenesis in some of these behaviors has been debated as some studies have shown no effects of altering adult neurogenesis on spatial navigation or antidepressant response. Proposed explanations have included differences in the behavioral tasks used to measure cognition or emotion, motivational state of subjects, species differences, or in how neurogenesis is defined, either as proliferation, survival, or differentiation (see reviews in Zhao et al. 2008; Aimone et al. 2011; Petrik et al. 2012b; Miller and Hen 2014).It must also be noted, however, that these hippocampal neurons are not born into a singular structure. Work in the past several decades has shown that the hippocampus can be divided, not only along the classic trisynaptic loop, but also longitudinally along a septotemporal axis. The septal (dorsal in rodents; posterior in primates) and temporal (ventral in rodents; anterior in primates) poles, as well as potential intermediate zones of the hippocampus, have different anatomic connections and electrophysiological properties, express a gradient of molecular markers, and play different functional roles, such as performance in spatial learning tasks and stress responses (see reviews in Moser and Moser 1998; Fanselow and Dong 2010). Consequently, adult-born neurons in the hippocampal DG may also be segregated along this longitudinal axis, and conflicting functional roles for neurogenesis may be a result of attempting to examine hippocampal neurogenesis as a unitary phenomenon. It is possible that there are intrinsic, cell-autonomous differences in adult-born neurons generated at opposite poles of the DG. An alternative, although not mutually exclusive, hypothesis is that progenitor cells are initially identical, but differentiate in a dissimilar manner as a result of integration into distinct network circuitry. We will, therefore, first discuss heterogeneity of the hippocampus along its longitudinal axis before reviewing differences in neurogenesis between the septal and temporal poles of the DG. As these topics have been reviewed extensively elsewhere (Moser and Moser 1998; Deng et al. 2010; Fanselow and Dong 2010; Koehl and Abrous 2011; Samuels and Hen 2011; Kheirbek et al. 2012; Petrik et al. 2012b), we will not try to exhaustively cover all the current literature. Rather, we attempt to gather key studies examining a septotemporal gradient of the hippocampus and hippocampal neurogenesis. We will then suggest possible approaches to examine neurogenesis in specific subregions of the hippocampal DG. Finally, a short section will examine segregation of the DG along its transverse axis.  相似文献   

9.
The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function.Following the pioneering work of George Streisinger in the early 1980s, the zebrafish has emerged as a premier vertebrate model system (Streisinger et al. 1981). A key strength of the zebrafish is that the embryos and early larvae are transparent, allowing exquisite cellular analysis of many dynamic processes, including cell migration, axonal pathfinding, and myelination, among many others (e.g., Gilmour et al. 2002; Lyons et al. 2005; Czopka et al. 2013). The zebrafish also has many advantages for large-scale genetic studies, including relatively small size and rapid development, high fecundity, and the ability to manipulate the ploidy of gametes and early embryos (Kimmel 1989). Through the 1980s and early 1990s, insightful studies of several interesting mutations elegantly exploited these experimental advantages (e.g., Kimmel et al. 1989; Ho and Kane 1990; Hatta et al. 1991; Grunwald and Eisen 2002), attracting many researchers from other fields to the zebrafish system. Following the explosion of interest in the zebrafish in the 1990s, advances in many areas have added to the strengths of the system, including large-scale screens that identified thousands of new mutations (Driever et al. 1996; Haffter et al. 1996), rapid transgenesis (Kawakami et al. 2004), new methods for imaging and tracking all cells during development (Huisken 2012), genetic mapping and sequencing to identify genes and mutated loci (Postlethwait et al. 1994; Howe et al. 2013), optogenetic methods to control neural activity (Portugues et al. 2013), the advent of targeted nucleases to create mutations in genes of interest (Huang et al. 2011; Sander et al. 2011; Bedell et al. 2012; Chang et al. 2013; Hwang et al. 2013), and small molecule screening approaches to isolate compounds with novel biological activities in vivo (Peterson and Fishman 2011).Many fundamental similarities in physiology and body plan unite the zebrafish and other vertebrates (Kimmel 1989). In addition, analysis of genes and genomes has revealed that sequence, expression, and function of many genes are conserved among zebrafish and other vertebrates (Postlethwait and Talbot 1997; Howe et al. 2013). Thus, insights from studies in zebrafish will apply broadly to other vertebrates, including humans. On the other hand, there are important genetic, genomic, and physiological differences among vertebrates. It is, therefore, important to keep possible differences in mind and to recognize that analyzing the diversity among different species may enhance overall understanding of important processes. For example, zebrafish and other teleosts have a much more extensive regenerative ability than mammals, so that studies of fin, heart, and spinal cord regeneration in zebrafish may suggest avenues toward new therapeutic approaches in humans (Gemberling et al. 2013; Becker and Becker 2014).In this review, we provide an overview of different types of glia in the zebrafish, with a focus on some recent studies that highlight the power of the zebrafish system to analyze different aspects of glial development and function.  相似文献   

10.
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.Proteins that are exposed at the plasma membrane or populate a membrane-bounded organelle are synthesized into the endoplasmic reticulum (ER). In the ER, the folding of these proteins takes place and posttranslational modifications such as N-glycosylation and disulfide bridge formation occur. Upon adopting a suitable, often correct, conformation, proteins destined to locations beyond the ER are concentrated at so-called ER exit sites (ERES) and incorporated into nascent COPII-coated vesicles. These COPII vesicles eventually bud off the ER membrane and are transported to the Golgi (in yeast, Drosophila, and C. elegans) or the ER-Golgi intermediate compartment (in mammalian cells) (Schweizer et al. 1990; Kondylis and Rabouille 2003; Spang 2009; Witte et al. 2011).It is assumed that the vesicle coat is at least partially destabilized through the hydrolysis of GTP by the small GTPase Sar1 (Oka and Nakano 1994; Springer et al. 1999). However, some of the destabilized coat components have to stay on the vesicle until it has reached the Golgi apparatus because coat components participate in the recognition and the tethering process (Barlowe 1997; Cai et al. 2007; Lord et al. 2011; Zong et al. 2012). Subsequently, SNARE proteins on the vesicles (v-SNAREs) zipper up with cognate SNAREs on the Golgi (target SNAREs, t-SNAREs) to drive membrane fusion (Hay et al. 1998; Cao and Barlowe 2000; Parlati et al. 2002). The content of the ER-derived COPII vesicles is thereby released into the lumen of the cis-cisterna of the Golgi apparatus. Most proteins will continue their journey through the Golgi apparatus and encounter further modifications such as extension of the glycosylation tree or lipidation. However, some proteins, especially those involved in the fusion process, i.e., the v-SNAREs or proteins that act as export factors of the ER, such as Vma21, which is essential for export of the correctly folded and assembled V0 sector of the V-ATPase, need to be recycled back to the ER for another round of transport (Ballensiefen et al. 1998; Malkus et al. 2004). Moreover, cis-Golgi proteins are returned to the ER for quality/functional control (Todorow et al. 2000; Sato et al. 2004; Valkova et al. 2011). Finally, some ER-resident proteins, such as the ER Hsp70 chaperone BiP/Kar2, can escape the ER, but are captured at the cis-Golgi by the H/KDEL receptor Erd2 and returned to the ER (Lewis et al. 1990; Semenza et al. 1990; Aoe et al. 1997).Unfortunately, the retrograde transport route is also hijacked by toxins. For example, endocytosed cholera toxin subunit A contains a KDEL sequence and can thereby exploit the system to access the ER (Majoul et al. 1996, 1998). From there, it is retro-translocated into the cytoplasm where it can exert its detrimental function.  相似文献   

11.
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.Microglia are the resident macrophages of the central nervous system (CNS), which are uniformly distributed throughout the brain and spinal cord with increased densities in neuronal nuclei, including the Substantia nigra in the midbrain (Lawson et al. 1990; Perry 1998). They belong to the nonneuronal glial cell compartment and their function is crucial to maintenance of the CNS in both health and disease (Ransohoff and Perry 2009; Perry et al. 2010; Ransohoff and Cardona 2010; Prinz and Priller 2014).Two key functional features define microglia: immune defense and maintenance of CNS homeostasis. As part of the innate immune system, microglia constantly sample their environment, scanning and surveying for signals of external danger (Davalos et al. 2005; Nimmerjahn et al. 2005; Lehnardt 2010), such as those from invading pathogens, or internal danger signals generated locally by damaged or dying cells (Bessis et al. 2007; Hanisch and Kettenmann 2007). Detection of such signals initiates a program of microglial responses that aim to resolve the injury, protect the CNS from the effects of the inflammation, and support tissue repair and remodeling (Minghetti and Levi 1998; Goldmann and Prinz 2013).Microglia are also emerging as crucial contributors to brain homeostasis through control of neuronal proliferation and differentiation, as well as influencing formation of synaptic connections (Lawson et al. 1990; Perry 1998; Hughes 2012; Blank and Prinz 2013). Recent imaging studies revealed dynamic interactions between microglia and synaptic connections in the healthy brain, which contributed to the modification and elimination of synaptic structures (Perry et al. 2010; Tremblay et al. 2010; Bialas and Stevens 2013). In the prenatal brain, microglia regulate the wiring of forebrain circuits, controlling the growth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). In the postnatal brain, microglia-mediated synaptic pruning is similarly required for the remodeling of neural circuits (Paolicelli et al. 2011; Schafer et al. 2012). In summary, microglia occupy a central position in defense and maintenance of the CNS and, as a consequence, are a key target for the treatment of neurological and psychiatric disorders.Although microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated until recently. Although we knew that microglial progenitors invaded the brain rudiment at very early stages of embryonic development (Alliot et al. 1999; Ransohoff and Perry 2009), it has now been established that microglia arise from yolk sac (YS)-primitive macrophages, which persist in the CNS into adulthood (Davalos et al. 2005; Nimmerjahn et al. 2005; Ginhoux et al. 2010, 2013; Kierdorf and Prinz 2013; Kierdorf et al. 2013a). Moreover, early embryonic brain colonization by microglia is conserved across vertebrate species, implying that it is essential for early brain development (Herbomel et al. 2001; Bessis et al. 2007; Hanisch and Kettenmann 2007; Verney et al. 2010; Schlegelmilch et al. 2011; Swinnen et al. 2013). In this review, we will present the latest findings in the field of microglial ontogeny, which provide new insights into their roles in health and disease.  相似文献   

12.
13.
14.
DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.Before eukaryotic cells divide, the successful completion of DNA replication during S phase is essential to preserve genomic integrity from one generation to the next. During this process, the replication apparatus traverses in the form of bidirectionally moving forks to synthesize new daughter strands. Cells use several means to ensure faithful copying of the parental strands—first, by means of regulatory mechanisms a correctly coordinated replication apparatus is established, and second, a high degree of fidelity during DNA synthesis is maintained by replicative polymerases (Kunkel and Bebenek 2000; Reha-Krantz 2010). However, under several stressful circumstances, endogenously or exogenously induced, the replication apparatus can stall (Tourriere and Pasero 2007). Mostly, structural deformations in the form of lesions or special template-specific features arrest the replication process, activate checkpoint pathways and set in motion repair or tolerance mechanisms to counter the stalling (Branzei and Foiani 2009; Zegerman and Diffley 2009). Basic replication mechanism, its regulatory pathways and means to tolerate DNA damage are largely conserved across eukaryotic species (Branzei and Foiani 2010; Yao and O’Donnell 2010). Understanding the mechanisms involved may enable therapeutic intervention to several human conditions arising from an incomplete replication or from the inability to tolerate perturbations (Ciccia et al. 2009; Preston et al. 2010; Abbas et al. 2013). Enhanced replication stress has also been commonly identified in precancerous lesions, and the inactivation of checkpoint responses coping with this presumably oncogene-induced condition is considered necessary to establish the fully malignant phenotype (Bartkova et al. 2005; Negrini et al. 2010).It is not possible to treat this topic in a comprehensive manner in the allotted space; the reader is referred to excellent recent reviews for more details (Branzei and Foiani 2010; Jones and Petermann 2012). We will attempt to provide an overview of the various strategies that a eukaryotic cell invokes to avoid problems caused by replication stress related to DNA damage and, if problems arise, to tolerate damage without endangering the entire process of genome duplication. In this context, we will only give a brief outline of checkpoint responses that are discussed in more detail in Sirbu and Cortez (2013) and Marechal and Zou (2013). Also, a detailed discussion of translesion synthesis can be reviewed in Sale (2013).  相似文献   

15.
16.
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.The glycoprotein, colony-stimulating factor-1 (CSF-1), also known as macrophage-CSF (M-CSF), was the first of the CSFs to be purified (Stanley and Heard 1977) and was shown to stimulate the formation of colonies of macrophages (Stanley et al. 1978). This led to the identification (Guilbert and Stanley 1980) and purification (Yeung et al. 1987) of the CSF-1 receptor (CSF-1R) and the demonstration that it possessed intrinsic tyrosine kinase activity (Yeung et al. 1987). It was subsequently shown to be identical to the c-fms proto-oncoprotein (Sherr et al. 1985) previously studied by Sherr and colleagues (Rettenmier et al. 1985). The c-fms cDNA was cloned and shown to encode a typical class III receptor tyrosine kinase (RTK) (Coussens et al. 1986).The CSF-1R plays a central role in many diseases. Dominant inactivating mutations in the CSF-1R lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (Rademakers et al. 2011; Nicholson et al. 2013). Inappropriate expression of the CSF-1R contributes to the development of leukemias and lymphomas, and autocrine and paracrine regulation of the CSF-1R enhances the progression and metastasis of solid tumors (reviewed in Pollard 2009; Chitu and Stanley 2014). In addition, regulation through the CSF-1R contributes to chronic inflammatory diseases (reviewed in Chitu and Stanley 2006; Chitu et al. 2012). This review focuses on the CSF-1R regulation and signaling in cells of the myeloid lineage.  相似文献   

17.
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.The discovery and characterization of clathrin (Pearse 1975) initiated molecular definition of the many endocytosis regulators described in this collection, which mediate the clathrin-dependent and -independent pathways for membrane internalization (see Kirchhausen et al. 2014; Mayor et al. 2014; Merrifield and Kaksonen 2014). In accompanying reviews, we have seen how these endocytic pathways influence nutrition and metabolism (see Antonescu et al. 2014), signal transduction (see Bökel and Brand 2014; Di Fiore and von Zastrow 2014), neuronal function (see Morgan et al. 2013; Cosker and Segal 2014), infection and immunity (see ten Broeke et al. 2013; Cossart and Helenius 2014), tissue polarity and development (see Eaton and Martin-Belmonte 2014; Gonzalez-Gaitan and Jülicher 2014), and migration and metastasis (see Mellman and Yarden 2013). Recently, it has been established that some endocytic regulators have molecular properties that expand their functions beyond endocytosis. These include molecular interactions that affect the microtubule and actin cytoskeletons, nuclear translocation that influences gene regulation, and the formation of membrane-associated scaffolds that serve as signaling and sorting platforms. Through these diverse nonendocytic functions, endocytosis regulators play additional roles in cell division, pathogen infection, cell adhesion, and oncogenesis. In this article, we review the nonconventional behavior of endocytic regulators, first discussing the molecular properties that enable their moonlighting functions and then discussing the cellular processes and disease states that are influenced by these functions.  相似文献   

18.
A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy.In all cellular compartments, correct protein folding is critical to maintain cellular homeostasis. In cases where proteins become misfolded or damaged, it is imperative that they are turned over and removed to prevent the formation of toxic folding intermediates or the accumulation of aggregates to levels that can be deleterious for the cell. Several neurodegenerative diseases share a common pathogenic mechanism, which involves the formation of fibrillar aggregates of a particular protein that can accumulate in the cytosol, the nucleus, or the mitochondria. Examples of this include accumulation of the amyloid-β peptide in Alzheimer’s disease (Kayed et al. 2003; Tanzi and Bertram 2005), accumulation of α-synuclein in Parkinson’s disease (Spillantini et al. 1997; Zarranz et al. 2004), and aggregation of a mutant form of the huntingtin protein caused by extended polyglutamine stretches in Huntington’s disease (DiFiglia et al. 1997). Although the exact mechanism of pathogenesis for these diseases remains unresolved, mitochondrial dysfunction is implicated in their progression, which may in turn be responsible for the loss of neurological cell populations because of their sensitivity and requirement for functional mitochondria (Rodolfo et al. 2010).The evolution of mitochondria began approximately 1.5 billion years ago after an α-proteobacterium was engulfed by a preeukaryotic cell (Gray et al. 1999). Since that time, mitochondria have retained two phospholipid bilayers that segregate two aqueous compartments, the mitochondrial intermembrane space (IMS) and the mitochondrial matrix (Palade 1953). Mitochondria are found in essentially all eukaryotic cells and play integral roles in a number of the cell''s metabolic pathways. For example, mitochondria are the key players in cellular ATP production through an elaborate respiratory chain network found in the organelles inner membrane (IM) (Mitchell 1961; Leonard and Schapira 2000). Mitochondria are also required for the β-oxidation of fatty acids, Fe-S biosynthesis, and Ca2+ homeostasis (Pinton et al. 1998; Rizzuto et al. 2000; Lill 2009; Modre-Osprian et al. 2009). Moreover, mitochondria are key regulators of programmed cell death and they participate in developmental processes as well as aging (Singh 2004; Green 2005).In contrast to early depictions of mitochondria as singular kidney bean shaped entities, it is now well established that mitochondria form elaborate, reticular networks in many tissues (Bereiter-Hahn 1990). The ability of mitochondria to form such networks arises from two major factors: (1) Specialized machineries in the mitochondrial outer membrane (OM) and the IM allow mitochondria to fuse and divide and (2) mitochondria are able to be shuttled along cytoskeletal elements (Anesti and Scorrano 2006; Hoppins et al. 2007). This plasticity of mitochondria ensures that they are able to respond to different cellular cues, which is potentially important for their numerous functions. In different cell types, mitochondria adopt varying morphologies (Kuznetsov et al. 2009). For example, in cultured fibroblasts mitochondria form extensive reticular networks, whereas in neuronal cells, mitochondria can be found enriched at areas of high-energy demand, including presynaptic termini, axon initial segments, and growth cones. Furthermore, in muscle cells, mitochondria adopt a very uniform intermyofibrillar conformation (Vendelin et al. 2005). The dynamic nature of mitochondria provides an explanation as to how they adopt varying organizations in different cell populations. The importance of mitochondrial networks is highlighted by the fact that mutations in components involved in maintaining mitochondrial dynamics results in neurodegenerative diseases (Chan 2006; Olichon et al. 2006; Knott et al. 2008; Martinelli and Rugarli 2010; Winklhofer and Haass 2010).  相似文献   

19.
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN–FN and cell–FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.As a ubiquitous component of the extracellular matrix (ECM), fibronectin (FN) provides essential connections to cells through integrins and other receptors and regulates cell adhesion, migration, and differentiation. FN is secreted as a large dimeric glycoprotein with subunits that range in size from 230 kDa to 270 kDa (Mosher 1989; Hynes 1990). Variation in subunit size depends primarily on alternative splicing. FN was first isolated from blood more than 60 years ago (Edsall 1978), and this form is called plasma FN. The other major form, called cellular FN, is abundant in the fibrillar matrices of most tissues. Although FN is probably best known for promoting attachment of cells to surfaces, this multidomain protein has many interesting structural features and functional roles beyond cell adhesion.FN is composed of three different types of modules termed type I, II, and III repeats (Fig. 1) (Petersen et al. 1983; Hynes 1990). These repeats have distinct structures. Although the conformations of type I and type II repeats are maintained by pairs of intramodule disulfide bonds, the type III repeat is a 7-stranded β-barrel structure that lacks disulfide bonds (Main et al. 1992; Leahy et al. 1996, 1992) and, therefore, can undergo conformational changes. FN type III repeats are widely distributed among animal, bacterial, and plant proteins and are found in both extracellular and intracellular proteins (Bork and Doolittle 1992; Tsyguelnaia and Doolittle 1998).Open in a separate windowFigure 1.FN domain organization and isoforms. Each FN monomer has a modular structure consisting of 12 type I repeats (cylinders), 2 type II repeats (diamonds), and 15 constitutive type III repeats (hexagons). Two additional type III repeats (EIIIA and EIIIB, green) are included or omitted by alternative splicing. The third region of alternative splicing, the V region (green box), is included (V120), excluded (V0), or partially included (V95, V64, V89). Sets of modules comprise domains for binding to other extracellular molecules as indicated. Domains required for fibrillogenesis are in red: the assembly domain (repeats I1-5) binds FN, III9-10 contains the RGD and synergy sequences for integrin binding, and the carboxy-terminal cysteines form the disulfide-bonded FN dimer (‖). The III1-2 domain (light red) has two FN binding sites that are important for fibrillogenesis. The amino-terminal 70-kDa fragment contains assembly and gelatin-binding domains and is routinely used in FN binding and matrix assembly studies.Sets of adjacent modules form binding domains for a variety of proteins and carbohydrates (Fig. 1). ECM proteins, including FN, bind to cells via integrin receptors, αβ heterodimers with two transmembrane subunits (Hynes 2002). FN-binding integrins have specificity for one of the two cell-binding sites within FN, either the RGD-dependent cell-binding domain in III10 (Pierschbacher and Ruoslahti 1984) or the CS1 segment of the alternatively spliced V region (IIICS) (Wayner et al. 1989; Guan and Hynes 1990). Some integrins require a synergy sequence in repeat III9 for maximal interactions with FN (Aota et al. 1994; Bowditch et al. 1994). Another family of cell surface receptors is the syndecans, single-chain transmembrane proteoglycans (Couchman 2010). Syndecans use their glycosaminoglycan (GAG) chains to interact with FN at its carboxy-terminal heparin-binding (HepII) domain (Fig. 1) (Saunders and Bernfield 1988; Woods et al. 2000), which binds to heparin, heparan sulfate, and chondroitin sulfate GAGs (Hynes 1990; Barkalow and Schwarzbauer 1994). Syndecan binding to the HepII domain enhances integrin-mediated cell spreading and intracellular signaling, suggesting that syndecans act as coreceptors with integrins in cell–FN binding (Woods and Couchman 1998; Morgan et al. 2007).A major site for FN self-association is within the amino-terminal assembly domain spanning the first five type I repeats (I1-5) (Fig. 1) (McKeown-Longo and Mosher 1985; McDonald et al. 1987; Schwarzbauer 1991b; Sottile et al. 1991). This domain plays an essential role in FN fibrillogenesis. As a major blood protein, FN interacts with fibrin during blood coagulation, also using the I1-5 domain (Mosher 1989; Hynes 1990). As fibrin polymerizes, factor XIII transglutaminase covalently cross-links glutamine residues near the amino terminus of FN to fibrin α chains (Mosher 1975; Corbett et al. 1997). The amino-terminal domain has multiple binding partners in addition to FN and fibrin; these include heparin, S. aureus, and other bacteria, thrombospondin-1, and tenascin-C (Hynes 1990; Ingham et al. 2004; Schwarz-Linek et al. 2006). Adjacent to this domain is the gelatin/collagen-binding domain composed of type I and type II modules (Ingham et al. 1988). This domain also binds to tissue transglutaminase (Radek et al. 1993) and fibrillin-1 (Sabatier et al. 2009). Within the 15 type III repeats reside several FN binding sites that interact with the amino-terminal assembly domain as well as three sites of alternative splicing that generate multiple isoforms. At the carboxyl terminus is a pair of cysteine residues that form the FN dimer through antiparallel disulfide bonds (Hynes 1990). This dimerization may be facilitated by disulfide isomerase activity located in the last set of type I repeats (Langenbach and Sottile 1999).The diverse set of binding domains provides FN with the ability to interact simultaneously with other FN molecules, other ECM components (e.g., collagens and proteoglycans), cell surface receptors, and extracellular enzymes (Pankov and Yamada 2002; Fogelgren et al. 2005; Hynes 2009; Singh et al. 2010). Multitasking by FN probably underlies its essential role during embryogenesis (George et al. 1993). Furthermore, FN''s interactions can be modulated by exposure or sequestration of its binding sites within matrix fibrils, through the presence of ECM proteins that bind to FN, or through variation in structure by alternative splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号