首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Tsetse flies are vectors of human and animal African trypanosomiasis. In spite of many decades of chemotherapy and vector control, the disease has not been eradicated. Other methods like the transformation of tsetse fly symbionts to render the fly refractory to trypanosome infection are being evaluated. The aim of the present study was to evaluate the association between trypanosome infections and the presence of symbionts in these tsetse species. Tsetse flies were trapped in two villages of the “Faro and Déo” Division of the Adamawa region of Cameroon. In the field, tsetse fly species were identified and their infection by trypanosomes was checked by microscopy. In the laboratory, DNA was extracted from their midguts and the presence of symbionts (Sodalis glossinidius and Wolbachia sp.) and trypanosomes was checked by PCR. Symbionts/trypanosomes association tests were performed.

Results

Three tsetse fly species including Glossina tachinoides (90.1%), Glossina morsitans submorsitans (9.4%) and Glossina fuscipes fuscipes (0.5%) were caught. In all the population we obtained an occurrence rate of 37.2% for Sodalis glossinidius and 67.6% for Wolbachia irrespective to tsetse flies species. S. glossinidius and Wolbachia sp. occurrence rates were respectively 37 and 68% for G. tachinoides and 28.6 and 59.5% for G. m. submorsitans. Between Golde Bourle and Mayo Dagoum significant differences were observed in the prevalence of symbionts. Prevalence of trypanosomes were 34.8% for Glossina tachinoides and 40.5% for Glossina morsitans submorsitans. In G. tachinoides, the trypanosome infection rates were 11, 2.6 and 13.7%, respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. In G. m. submorsitans, these infection rates were 16.7, 9.5 and, 2.4% respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type.

Conclusions

The rate of tsetse fly infection by trypanosomes was low compared to those obtained in HAT foci of south Cameroon, and this rate was not statistically linked to the rate of symbiont occurrence. This study allowed to show for the first time the presence of Wolbachia sp. in the tsetse fly sub-species Glossina morsitans submorsitans and Glossina tachinoides.
  相似文献   

2.
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis.  相似文献   

3.
To identify Trypanosoma brucei genotypes which are potentially transmitted in a sleeping sickness focus, microsatellite markers were used to characterize T. brucei found in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus in Cameroon. For this study, two entomological surveys were performed during which 2685 tsetse flies were collected and 1596 (59.2%) were dissected. Microscopic examination revealed 1.19% (19/1596) mid-gut infections with trypanosomes; the PCR method identified 4.7% (75/1596) infections with T. brucei in the mid-guts. Of these 75 trypanosomes identified in the mid-guts, Trypanosoma brucei gambiense represented 0.81% (13/1596) of them, confirming the circulation of human infective parasite in the Fontem focus. Genetic characterization of the 75 T. brucei samples using five microsatellite markers revealed not only multiple T. brucei genotypes (47%), but also single genotypes (53%) in the mid-guts of the wild tsetse flies. These results show that there is a wide range of trypanosome genotypes circulating in the mid-guts of wild tsetse flies from the Fontem sleeping sickness focus. They open new avenues to undertake investigations on the maturation of multiple infections observed in the tsetse fly mid-guts. Such investigations may allow to understand how the multiple infections evolve from the tsetse flies mid-guts to the salivary glands and also to understand the consequence of these evolutions on the dynamic (which genotype is transmitted to mammals) of trypanosomes transmission.  相似文献   

4.
A strain of Trypanosoma congolense has been cloned, passaged through the tsetse fly, and subsequently recloned. Relapsing infections have been induced in two rats by syringe passage of the cloned trypanosomes. The variant-specific glycoprotein of the initial cloned variant (VSG-1) and those from the two different variants produced in the two relapsing infections (VSG-2 and VSG-3) may be distinguished from each other by their isoelectric-focusing patterns. In this experimental system, cloned T. congolense, like Trypanosoma brucei, undergoes antigenic variation; the conversion of the VSG-1 into the VSG-2 isoelectric-focusing spectrotype was followed. These VSGs may be the products of sequentially expressed genes.  相似文献   

5.
Tsetse flies, the vectors of trypanosomiasis, represent a threat to public health and economy in sub‐Saharan Africa. Despite these concerns, information on temporal and spatial dynamics of tsetse and trypanosomes remain limited and may be a reason that control strategies are less effective. The current study assessed the temporal variation of the relative abundance of tsetse fly species and trypanosome prevalence in relation to climate in the Maasai Steppe of Tanzania in 2014–2015. Tsetse flies were captured using odor‐baited Epsilon traps deployed in ten sites selected through random subsampling of the major vegetation types in the area. Fly species were identified morphologically and trypanosome species classified using PCR. The climate dataset was acquired from the African Flood and Drought Monitor repository. Three species of tsetse flies were identified: G. swynnertoni (70.8%), G. m. morsitans (23.4%), and G.pallidipes (5.8%). All species showed monthly changes in abundance with most of the flies collected in July. The relative abundance of G. m. morsitans and G. swynnertoni was negatively correlated with maximum and minimum temperature, respectively. Three trypanosome species were recorded: T. vivax (82.1%), T. brucei (8.93%), and T. congolense (3.57%). The peak of trypanosome infections in the flies was found in October and was three months after the tsetse abundance peak; prevalence was negatively correlated with tsetse abundance. A strong positive relationship was found between trypanosome prevalence and temperature. In conclusion, we find that trypanosome prevalence is dependent on fly availability, and temperature drives both tsetse fly relative abundance and trypanosome prevalence.  相似文献   

6.
Tissues from pupae of Glossina morsitans of various ages were cultured in modified Trager's medium. Cellular outgrowths were produced from explants of proventriculus, brain, and imaginal body wall and large vesicles were extruded from pieces of midgut of young pupae. Complete alimentary tract from older pupae displayed rhythmic contractions for up to 3 weeks. When Trypanosoma brucei and T. congolense in mouse blood were added to hanging drop cultures of tsetse tissues and incubated at 28 C, the organisms multiplied and changed into forms morphologically similar to those found in the tsetse fly midgut. The trypanosomes were maintained for 30 days by serial passage at 5-day intervals. The growth of T. brucei in the presence of different pupal tissues was studied. Of all the tissues tested the complete alimentary tract from pupae older than 21 days gave the best results. Growth also occurred when the trypanosomes were separated from the insect tissue by a semipermeable membrane. The trypanosomes failed to grow in (a) culture medium alone, (b) media containing extracts of alimentary canal and (c) medium in which alimentary tract had been cultured for 3 or 4 days.  相似文献   

7.

Background

As the reality of eliminating human African trypanosomiasis (HAT) by 2020 draws closer, the need to detect and identify the remaining areas of transmission increases. Here, we have explored the feasibility of using commercially available LAMP kits, designed to detect the Trypanozoon group of trypanosomes, as a xenomonitoring tool to screen tsetse flies for trypanosomes to be used in future epidemiological surveys.

Methods and Findings

The DNA extraction method was simplified and worked with the LAMP kits to detect a single positive fly when pooled with 19 negative flies, and the absolute lowest limit of detection that the kits were able to work at was the equivalent of 0.1 trypanosome per ml. The DNA from Trypanosoma brucei brucei could be detected six days after the fly had taken a blood meal containing dead trypanosomes, and when confronted with a range of non-target species, from both laboratory-reared flies and wild-caught flies, the kits showed no evidence of cross-reacting.

Conclusion

We have shown that it is possible to use a simplified DNA extraction method in conjunction with the pooling of tsetse flies to decrease the time it would take to screen large numbers of flies for the presence of Trypanozoon trypanosomes. The use of commercially-available LAMP kits provides a reliable and highly sensitive tool for xenomonitoring and identifying potential sleeping sickness transmission sites.  相似文献   

8.
Abstract. Teneral Glossina morsitans centralis and G. brevipalpis were fed in vitro upon medium containing procyclic Trypanosoma brucei brucei derived from the midguts of G. m. centralis or G. brevipalpis which had immature trypanosome infections. The tsetse were then maintained on rabbits and, on day 31, were dissected to determine the infection rates. In G. m. centralis the midgut and salivary gland infection rates by T. b. brucei were 46.0% and 27.0% with procyclic trypanosomes from G. m. centralis, and 45.4% and 24.7% with procyclic trypanosomes from G. brevipalpis, respectively. In G. brevipalpis the rates were 20.2% and 0.0% with procyclic trypanosomes from G. m. centralis, and 28.0% and 0.0% with procyclic trypanosomes from G. brevipalpis, respectively. Teneral G. m. centralis and G. brevipalpis were also fed similarly upon procyclic T. b. brucei derived from G.m.centralis or G. brevipalpis on day 31 of infection, the former tsetse species had mature infections while the latter were without infections in the salivary glands. In G.m.centralis the infection rates in the midgut and salivary glands were 48.9% and 17.0%, and 38.0% and 17.0% when fed on procyclic trypanosomes from G.m.centralis and G. brevipalpis, respectively. In G. brevipalpis the rates were 21.5% and 0.0%, and 10.7% and 0.0% with procyclic trypanosomes of G.m.centralis and G. brevipalpis origin, respectively. Thus, procyclic T. b. brucei from susceptible G.m.centralis could not complete cyclical development in refractory G. brevipalpis, whereas those from G. brevipalpis developed to metatrypanosomes in the salivary glands of G.m.centralis. Teneral and 15-day-old non-teneral G.m.centralis were fed in vitro upon heparinized goat's blood containing T. b. brucei bloodstream trypomastigotes, or upon medium containing procyclic T. b. brucei derived from G.m.centralis with mature infections. On day 31 their infection rates were determined. The infection rates by T. b. brucei in the midgut and salivary glands of G.m.centralis fed on the infected blood were 70.4% and 40.4% when fed as teneral tsetse, as against 15.3% and 4.0% when fed as non-teneral tsetse. Those tsetse which were fed on the medium containing procyclic trypanosomes showed rates of 50.0% and 25.6%, as against 11.6% and 2.5%, respectively. It would appear, therefore, that maturation of T. b. brucei in tsetse is probably not determined simply by an interaction between lectin and procyclic trypanosomes in the midgut of non-teneral tsetse, but it is the result of a complex interaction between many interrelated physiological factors of both the trypanosome and the tsetse vector.  相似文献   

9.
Over 10000 Glossina pallidipes tsetse flies were collected during two field studies in the Zambezi Valley, Zimbabwe and one in the Luangwa Valley, Zambia. These were screened for mature trypanosome infections and 234 dot-blot preparations were made of infected midguts, which were screened using DNA probes or PCR with primers specific to different species or types of the trypanosome subgenus Nannomonas. Over 70% of midgut infections were successfully identified as either Trypanosoma godfreyi, T. simiae or three types of T. congolense, savannah, riverine-forest and Kilifi. The relative abundance of species and types did not vary significantly between study locations, habitat, season or tsetse age or sex, although there were differences between DNA probe and PCR results. Mixed species and/or mixed type infections were common and were more often detected using PCR. The distribution of infections among flies was highly aggregated, but there was no tendency for multiple infections to accumulate in older flies, implying that sequential superinfection may be uncommon. Possible explanations for these patterns are discussed.  相似文献   

10.
Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites.  相似文献   

11.

Background

Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies.

Results

Flies (n?=?1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly.

Conclusions

We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions.
  相似文献   

12.
Background

Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies.

Results

Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly.

Conclusions

We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions.

  相似文献   

13.
African trypanosomes are digenetic parasites that undergo part of their developmental cycle in mammals and part in tsetse flies. We established a novel technique to monitor the population dynamics of Trypanosoma brucei throughout its life cycle while minimising the confounding factors of strain differences or variation in fitness. Clones derived from a single trypanosome were tagged with short synthetic DNA sequences in a non-transcribed region of the genome. Infections were initiated with mixtures of tagged parasites and a combination of polymerase chain reaction and deep sequencing were used to monitor the composition of populations throughout the life cycle. This revealed that a minimum of several hundred parasites survived transmission from a tsetse fly to a mouse, or vice versa, and contributed to the infection in the new host. In contrast, the parasites experienced a pronounced bottleneck during differentiation and migration from the midgut to the salivary glands of tsetse. In two cases a single tag accounted for ≥99% of the population in the glands, although minor tags could be also detected. Minor tags were transmitted to mice together with the dominant tag(s), persisted during a chronic infection, and survived transmission to a new insect host. An important outcome of the bottleneck within the tsetse is that rare variants can be amplified in individual flies and disseminated by them. This is compatible with the epidemic population structure of T. brucei, in which clonal expansion of a few genotypes in a region occurs against a background of frequent recombination between strains.  相似文献   

14.
Sodalis glossinidius is an endosymbiont of Glossina palpalis gambiensis and Glossina morsitans morsitans, the vectors of Trypanosoma congolense. The presence of the symbiont was investigated by PCR in Trypanosoma congolense savannah type-infected and noninfected midguts of both fly species, and into the probosces of flies displaying either mature or immature infection, to investigate possible correlation with the vectorial competence of tsetse flies. Sodalis glossinidius was detected in all midguts, infected or not, from both Glossina species. It was also detected in probosces from Glossina palpalis gambiensis flies displaying mature or immature infection, but never in probosces from Glossina morsitans morsitans. These results suggest that, a) there might be no direct correlation between the presence of Sodalis glossinidius and the vectorial competence of Glossina, and b) the symbiont is probably not involved in Trypanosoma congolense savannah type maturation. It could however participate in the establishment process of the parasite.  相似文献   

15.
SYNOPSIS The course of Trypanosoma congolense infections in Glossina morsitans morsitans was followed by electron-microscopic examination of ultrathin sections of the guts and proboscises of infected flies. Guts dissected from flies 7 days after infection with culture procyclic forms of T. congolense had heavy trypanosome infections in the midgut involving both the endo- and ectoperitrophic spaces. Trypanosomes were also seen in the process of penetrating the fully formed peritrophic membrane in the central region of the midgut. By post infection day 21, trypanosomes had reached the proboscis of the fly and were found as clumps of epimastigote forms attached to the labrum by hemidesmosomes between their flagella and the chitinous lining of the food canal. Desmosome connections were observed between the flagella of adjacent epimastigotes. Flies examined at postinfection days 28 and 42 had, in addition to the attached forms in the labrum, free forms in the hypopharynx.  相似文献   

16.
SYNOPSIS. Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

17.
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.  相似文献   

18.
An assay to measure the specific proliferation in vitro of peripheral blood leukocytes (PBL) in response to ultrasonicated trypanosomes was adapted for use in cattle. The kinetics of mitosis exhibited by PBL from cattle which had been treated following infection with Trypanosoma congolense paralleled the development of a delayed-type skin reaction elicited with ultrasonicated and Formalin-fixed T. congolense. Responses in both tests were maximal on the fourth day after initiation. Specific proliferation of PBL harvested from cattle which had been immunized with intact, nonviable trypanosomes was also elicited in vitro by trypanosomal antigen. Peripheral blood leukocytes taken from cattle immunized with 50 μg of variant-specific surface antigen (VSSA) from T. brucei and from cattle infected with T. congolense were not stimulated to divide in vitro by ultrasonicated trypanosomes.  相似文献   

19.
The interactions of host, vector and parasite in bovine trypanosomiasis transmission cycles in southwest Nigeria are not yet well understood. Trypanosoma (Trypanosomatida: Trypanosomatidae) species infection prevalences and bloodmeal sources were determined in transmitting vectors of the genera Glossina (Diptera: Glossinidae), Tabanus (Diptera: Tabanidae) and Stomoxys (Diptera: Muscidae) collected using Nzi traps in cattle settlements in southwest Nigeria. Sequenced cytochrome B mitochondrial DNA segments obtained from vector digestive tracts identified bloodmeal sources from eight host species, namely human, cattle, hippopotamus, giraffe, gazelle, spotted hyena, long‐tailed rat and one unidentified species. Overall, 71.1% [95% confidence interval (CI) 63.0–78.1], 33.3% (95% CI 21.9–47.0) and 22.2% (95% CI 16.2–29.9), respectively, of Glossina, Tabanus and Stomoxys flies were positive for trypanosomes. The observed trypanosome species were Trypanosoma vivax, Trypanosoma congolense, Trypanosoma brucei, Trypanosoma evansi, Trypanosoma simiae and Trypanosoma godfreyi. Trypanosome DNA was more prevalent in tsetse (34.8% Tr. vivax, 51.1% Tr. b. brucei, 5.2% Tr. congolense, 4.4% Tr. simiae and 24.4% mixed infections) than in other flies and the main determinants in all flies were seasonal factors and host availability. To the best of the present group's knowledge, this is the first report of Trypanosoma species in Tabanus and Stomoxys flies in Nigeria. It indicates that vector control programmes should always consider biting flies along with tsetse flies in the control of human and animal trypanosomiasis.  相似文献   

20.
Background

Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal.

Results

The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected.

Conclusion

The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号