首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.  相似文献   

2.
Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.  相似文献   

3.
Alzheimer''s disease (AD) is a chronic neurodegenerative disease characterized by progressive neuronal loss and cognitive decline. Oligomeric amyloid β (oAβ) is involved in the pathogenesis of AD by affecting synaptic plasticity and inhibiting long-term potentiation. Although several lines of evidence suggests that microglia, the resident immune cells in the central nervous system (CNS), are neurotoxic in the development of AD, the mechanism whether or how oAβ induces microglial neurotoxicity remains unknown. Here, we show that oAβ promotes the processing of pro-interleukin (IL)-1β into mature IL-1β in microglia, which then enhances microglial neurotoxicity. The processing is induced by an increase in activity of caspase-1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) via mitochondrial reactive oxygen species (ROS) and partially via NADPH oxidase-induced ROS. The caspase-1 inhibitor Z-YVAD-FMK inhibits the processing of IL-1β, and attenuates microglial neurotoxicity. Our results indicate that microglia can be activated by oAβ to induce neuroinflammation through processing of IL-1β, a pro-inflammatory cytokine, in AD.  相似文献   

4.
Treatment for spinal cord injury (SCI) remains a challenge worldwide, and inflammation is a major cause of secondary injury after SCI. Peripheral macrophages (PMs) have been verified as a key factor that exert anti-inflammatory effects after SCI, but the mechanism is unidentified. As local macrophages, microglia also exert significant effects after SCI, especially polarization. Exosomes show source cell-like biological functions to target cells and have been the subject of much research in recent years. Thus, we hypothesized the PM-derived exosomes (PM-Exos) play an important role in signal transmission with local microglia and can be used therapeutic agents for SCI in a series of in vivo and in vitro studies. For the in vivo experiment, three groups of Sprague-Dawley (SD) rats subjected to spinal cord contusion injury were injected with 200 µg/ml PM-Exos, 20 µg/ml PM-Exos or PBS via the tail vein. Recovery of the rats and of spinal cord function were observed. In vitro, we investigated the potential anti-inflammatory mechanism of PM-Exos and evaluated microglial autophagy, anti-inflammatory type microglia polarization and the upstream signaling pathway. The results showed that spinal cord function and recovery were better in the PM-Exo groups than the control group. In the in vitro study, microglial autophagy levels and the expression of anti-inflammatory type microglia were higher in the experimental groups than the control group. Moreover, the expression of proteins related to the PI3K/AKT/mTOR autophagic signaling pathway was suppressed in the PM-Exo groups. PM-Exos have a beneficial effect in SCI, and activation of microglial autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhancing the polarization of anti-inflammatory type microglia, that may play a major role in the anti-inflammatory process.  相似文献   

5.
6.
BackgroundCopper (Cu) is an essential metal mediating a variety of vital biological reactions with its redox property. Its dyshomeostasis has been associated with accelerated cognitive decline and neurodegenerative disorders, such as Alzheimer’s disease (AD). However, underlying neurotoxic mechanisms elicited by dysregulated Cu remain largely elusive. We and others previously demonstrated that exposure to Cu in drinking water significantly exacerbated pathological hallmarks of AD and pro-inflammatory activation of microglia, coupled with impaired phagocytic capacity, in mouse models of AD.MethodsIn the present study, we extended our investigation to evaluate whether chronic Cu exposure to wild-type (WT) and J20 mouse model of AD perturbs homeostatic dynamics of microglia and contributes to accelerated transformation of microglia towards degenerative phenotypes that are closely associated with neurodegeneration. We further looked for evidence of alterations in the microglial morphology and spatial memory of the Cu-exposed mice to assess the extent of the Cu toxicity.ResultsWe find that chronic Cu exposure to pre-pathological J20 mice upregulates the translation of degenerative genes and represses homeostatic genes within microglia even in the absence amyloid-beta plaques. We also observe similar expression signatures in Cu-exposed WT mice, suggesting that excess Cu exposure alone could lead to perturbed microglial homeostatic phenotypes and contribute to accelerated cognitive decline.ConclusionOur findings highlight the risk of chronic Cu exposure on cognitive decline and altered microglia activation towards degenerative phenotypes. These changes may represent one of the key mechanisms linking Cu exposure or its dyshomeostasis to an increased risk for AD.  相似文献   

7.
PURPOSE OF REVIEW: Although it has often been postulated that the consumption of dairy products is associated with a high risk of coronary heart disease, study results have been conflicting. This review summarizes recent observational and human intervention trial findings on dairy products and cardiovascular disease. RECENT FINDINGS: Results from more recent observational studies on dairy products and milk disagree. This may be because of the very different methods used combined with several methodological problems. A somewhat surprising beneficial association between the intake of dairy products and the metabolic syndrome was observed in some studies, although not in a single study of elderly women. Milk may have the same cholesterol-raising properties as butter, whereas cheese does not seem to increase plasma cholesterol. Some milk products fermented by specific bacterial strains have been shown to have rather moderate cholesterol-reducing properties. There is also good evidence that certain fermented products (especially by Lactobacillus helveticus) have a mildly decreasing effect on hypertension, probably because of bioactive peptides. SUMMARY: When guiding principles such as balance, variety and moderation are stressed, there is no strong evidence that dairy products increase the risk of coronary heart disease in healthy men of all ages or young and middle-aged healthy women. Human studies should investigate the role of dairy products with respect to sex and age by including classic and novel risk markers of coronary heart disease. Specific fermented milks may be beneficial in the future prevention of hypertension. The beneficially neutral effect of cheese on coronary heart disease risk factors should be elucidated further.  相似文献   

8.
Numerous microorganisms, including bacteria, yeasts, and molds, constitute the complex ecosystem present in milk and fermented dairy products. Our aim was to describe the bacterial ecosystem of various cheeses that differ by production technology and therefore by their bacterial content. For this purpose, we developed a rapid, semisystematic approach based on genetic profiling by temporal temperature gradient electrophoresis (TTGE) for bacteria with low-G+C-content genomes and denaturing gradient gel electrophoresis (DGGE) for those with medium- and high-G+C-content genomes. Bacteria in the unknown ecosystems were assigned an identity by comparison with a comprehensive bacterial reference database of ~150 species that included useful dairy microorganisms (lactic acid bacteria), spoilage bacteria (e.g., Pseudomonas and Enterobacteriaceae), and pathogenic bacteria (e.g., Listeria monocytogenes and Staphylococcus aureus). Our analyses provide a high resolution of bacteria comprising the ecosystems of different commercial cheeses and identify species that could not be discerned by conventional methods; at least two species, belonging to the Halomonas and Pseudoalteromonas genera, are identified for the first time in a dairy ecosystem. Our analyses also reveal a surprising difference in ecosystems of the cheese surface versus those of the interior; the aerobic surface bacteria are generally G+C rich and represent diverse species, while the cheese interior comprises fewer species that are generally low in G+C content. TTGE and DGGE have proven here to be powerful methods to rapidly identify a broad range of bacterial species within dairy products.  相似文献   

9.
10.
Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1G93A mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1G93A mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.  相似文献   

11.
The addition of lysostaphin to starting materials for cheese and fermented sausage that were artificially contaminated with Staphylococcus aureus resulted in an initial decrease in the staphylococcal flora. In a simulated cheese process, lysostaphin remained with the curd after separation of the whey. In both cheese and fermented sausage samples that were produced experimentally in the laboratory, a significant S. aureus population ultimately developed, even in the presence of lysostaphin. Staphylococcal isolates from these treated products were not more resistant to the lytic enzyme than was the parent strain.  相似文献   

12.
13.
Few studies have measured the effect of genetic factors on dementia and cognitive decline in healthy older individuals followed prospectively. We studied cumulative incidence of dementia and cognitive decline, stratified by APOE genotypes and polygenic risk score (PRS) tertiles, in 12,978 participants of the ASPirin in Reducing Events in the Elderly (ASPREE) trial. At enrolment, participants had no history of diagnosed dementia, cardiovascular disease, physical disability or cognitive impairment. Dementia (adjudicated trial endpoint) and cognitive decline, defined as a >1.5 standard deviation decline in test score for either global cognition, episodic memory, language/executive function or psychomotor speed, versus baseline scores. Cumulative incidence for all‐cause dementia and cognitive decline was calculated with mortality as a competing event, stratified by APOE genotypes and tertiles of a PRS based on 23 common non‐APOE variants. During a median 4.5 years of follow‐up, 324 participants developed dementia, 503 died. Cumulative incidence of dementia to age 85 years was 7.4% in all participants, 12.6% in APOE ε3/ε4 and 26.6% in ε4/ε4. APOE ε4 heterozygosity/homozygosity was associated with a 2.5/6.3‐fold increased dementia risk and 1.4/1.8‐fold cognitive decline risk, versus ε3/ε3 (< 0.001 for both). High PRS tertile was associated with a 1.4‐fold dementia risk versus low (CI 1.04–1.76, = 0.02), but was not associated with cognitive decline (CI 0.96–1.22, p = 0.18). Incidence of dementia among healthy older individuals is low across all genotypes; however, APOE ε4 and high PRS increase relative risk. APOE ε4 is associated with cognitive decline, but PRS is not.  相似文献   

14.
The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions.  相似文献   

15.
Microglial cells closely interact with senile plaques in Alzheimer’s disease and acquire the morphological appearance of an activated phenotype. The significance of this microglial phenotype and the impact of microglia for disease progression have remained controversial. To uncover and characterize putative changes in the functionality of microglia during Alzheimer’s disease, we directly assessed microglial behavior in two mouse models of Alzheimer’s disease. Using in vivo two-photon microscopy and acute brain slice preparations, we found that important microglial functions - directed process motility and phagocytic activity - were strongly impaired in mice with Alzheimer’s disease-like pathology compared to age-matched non-transgenic animals. Notably, impairment of microglial function temporally and spatially correlated with Aβ plaque deposition, and phagocytic capacity of microglia could be restored by interventionally decreasing amyloid burden by Aβ vaccination. These data suggest that major microglial functions progressively decline in Alzheimer’s disease with the appearance of Aβ plaques, and that this functional impairment is reversible by lowering Aβ burden, e.g. by means of Aβ vaccination.  相似文献   

16.
17.
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/-), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.  相似文献   

18.
Brain microglia are resident macrophage-like cells representing the first and main form of active immune response during brain injury. Microglia-mediated inflammatory events in the brain are known to be associated with chronic degenerative diseases such as Multiple Sclerosis, Parkinson’s, or Alzheimer’s disease. Therefore, identification of mechanisms activating microglia is not only important in the understanding of microglia-mediated brain pathologies, but may also lead to the development of new anti-inflammatory drugs for the treatment of chronic neurodegenerative diseases. Recently, abscisic acid (ABA), a phytohormone regulating important physiological functions in higher plants, has been proposed to activate murine microglial cell line N9 through increased intracellular calcium. In the present study, we determined the response to ABA and its analogues from murine primary microglia and immortalized murine microglial cell line BV-2 and N9 cells. A Fura-2-acetoxymethyl ester (Fura-2AM)-based ratiometric calcium imaging and measurement technique was used to determine the intracellular calcium changes in these cells when treated with (−)-ABA, (+)-ABA, (−)-trans-ABA and (+)-trans-ABA. Both primary microglia and microglial cell lines (BV-2 and N9 cells) showed significant increase in intracellular calcium ([Ca2+]i) in response to treatment with ATP and ionomycine. However, ABAs failed to evoke dose- and time-dependent [Ca2+]i changes in mouse primary microglia, BV-2 and N9 cells. Together, these surprising findings demonstrate that, contrary to that reported in N9 cells [3], ABAs do not evoke intracellular calcium changes in primary microglia and microglial cell lines. The broad conclusion that ABA evokes [Ca2+]i in microglia requires more evidence and further careful examination.  相似文献   

19.
Suh HS  Choi N  Tarassishin L  Lee SC 《PloS one》2012,7(4):e35115

Background

The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.

Goal

In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells.

Methods

Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNγ), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.

Results

Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.

Conclusions

Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous modulator of innate immune responses.  相似文献   

20.

Background

Mild cognitive impairment and cognitive impairment, no dementia, are emerging terms that encompass the clinical state between normal cognition and dementia in elderly people. Controversy surrounds their characterization, definition and application in clinical practice. In this article, we provide physicians with practical guidance on the definition, diagnosis and treatment of mild cognitive impairment and cognitive impairment, no dementia, based on recommendations from the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia, held in March 2006.

Methods

We developed evidence-based guidelines using systematic literature searches, with specific criteria for study selection and quality assessment, and a clear and transparent decision-making process. We selected studies published from January 1996 to December 2005 that had mild cognitive impairment or cognitive impairment, no dementia, as the outcome. Subsequent to the conference, we searched for additional articles published between January 2006 and January 2008. We graded the strength of evidence using the criteria of the Canadian Task Force on Preventive Health Care.

Results

We identified 2483 articles, of which 314 were considered to be relevant and of good or fair quality. From a synthesis of the evidence in these studies, we made 16 recommendations. In brief, family physicians should be aware that most types of dementia are preceded by a recognizable phase of mild cognitive decline. They should be familiar with the concepts of mild cognitive impairment and of cognitive impairment, no dementia. Patients with these conditions should be closely monitored because of their increased risk for dementia. Leisure activities, cognitive stimulation and physical activity could be promoted as part of a healthy lifestyle in elderly people and those with mild cognitive impairment. Vascular risk factors should be treated optimally. No other specific therapies can yet be recommended.

Interpretation

Physicians will increasingly see elderly patients with mild memory loss, and learning an approach to diagnosing states such as mild cognitive impairment is now warranted. Close monitoring for progression to dementia, promotion of a healthy lifestyle and treatment of vascular risk factors are recommended for the management of patients with mild cognitive impairment.

Articles to date in this series

  • Chertkow H. Diagnosis and treatment of dementia: Introduction. Introducing a series based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. CMAJ 2008;178:316-21.
  • Patterson C, Feightner JW, Garcia A, et al. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 2008;178:548-56.
  • Feldman HH, Jacova C, Robillard A, et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ 2008;178:825-36.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号