共查询到20条相似文献,搜索用时 0 毫秒
1.
《Animal : an international journal of animal bioscience》2015,9(6):983-991
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production. 相似文献
2.
《Global Change Biology》2018,24(8):3368-3389
Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross‐validate their performance; and (4) assess the trade‐off between availability of on‐farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation. 相似文献
3.
《Animal : an international journal of animal bioscience》2014,8(9):1540-1546
Methane (CH4) emissions by dairy cows vary with feed intake and diet composition. Even when fed on the same diet at the same intake, however, variation between cows in CH4 emissions can be substantial. The extent of variation in CH4 emissions among dairy cows on commercial farms is unknown, but developments in methodology now permit quantification of CH4 emissions by individual cows under commercial conditions. The aim of this research was to assess variation among cows in emissions of eructed CH4 during milking on commercial dairy farms. Enteric CH4 emissions from 1964 individual cows across 21 farms were measured for at least 7 days/cow using CH4 analysers at robotic milking stations. Cows were predominantly of Holstein Friesian breed and remained on the same feeding systems during sampling. Effects of explanatory variables on average CH4 emissions per individual cow were assessed by fitting a linear mixed model. Significant effects were found for week of lactation, daily milk yield and farm. The effect of milk yield on CH4 emissions varied among farms. Considerable variation in CH4 emissions was observed among cows after adjusting for fixed and random effects, with the CV ranging from 22% to 67% within farms. This study confirms that enteric CH4 emissions vary among cows on commercial farms, suggesting that there is considerable scope for selecting individual cows and management systems with reduced emissions. 相似文献
4.
《Animal : an international journal of animal bioscience》2016,10(2):203-211
Milk fatty acid (FA) profile has been previously used as a predictor of enteric CH4output in dairy cows fed diets supplemented with plant oils, which can potentially impact ruminal fermentation. The objective of this study was to investigate the relationships between milk FA and enteric CH4 emissions in lactating dairy cows fed different types of forages in the context of commonly fed diets. A total of 81 observations from three separate 3×3 Latin square design (32-day periods) experiments including a total of 27 lactating cows (96±27 days in milk; mean±SD) were used. Dietary forages were included at 60% of ration dry matter and were as follows: (1) 100% corn silage, (2) 100% alfalfa silage, (3) 100% barley silage, (4) 100% timothy silage, (5) 50 : 50 mix of corn and alfalfa silages, (6) 50 : 50 mix of barley and corn silages and (7) 50 : 50 mix of timothy and alfalfa silages. Enteric CH4output was measured using respiration chambers during 3 consecutive days. Milk was sampled during the last 7 days of each period and analyzed for components and FA profile. Test variables included dry matter intake (DMI; kg/day), NDF (%), ether extract (%), milk yield (kg/day), milk components (%) and individual milk FA (% of total FA). Candidate multivariate models were obtained using the Least Absolute Shrinkage and Selection Operator and Least-Angle Regression methods based on the Schwarz Bayesian Criterion. Data were then fitted into a random regression using the MIXED procedure including the random effects of cow, period and study. A positive correlation was observed between CH4 and DMI (r=0.59,P<0.001), whereas negative associations were observed between CH4 and cis9-17:1 (r=−0.58, P<0.001), and trans8, cis13-18:2 (r=−0.51,P<0.001). Three different candidate models were selected and the best fit candidate model predicted CH4 with a coefficient of determination of 0.84 after correction for cow, period and study effects and was: CH4 (g/day)=319.7−57.4×15:0−13.8×cis9-17:1−39.5×trans10-18:1−59.9×cis11-18:1−253.1×trans8, cis12-18:2−642.7×trans8, cis13-18:2−195.7×trans11, cis15-18:2+16.5×DMI. Overall and linear prediction biases of all models were not significant (P>0.19). Milk FA profile and DMI can be used to predict CH4emissions in dairy cows across a wide range of dietary forage sources 相似文献
5.
Klevenhusen F Kreuzer M Soliva CR 《Animal : an international journal of animal bioscience》2011,5(3):450-461
Ruminant husbandry constitutes the most important source of anthropogenic methane (CH4). In addition to enteric (animal-derived) CH4, excreta are another source of CH4, especially when stored anaerobically. Increasing the proportion of dietary concentrate is often considered as the primary CH4 mitigation option. However, it is unclear whether this is still valid when diets to be compared are energy-balanced. In addition, non-structural carbohydrates and side effects on nitrogen (N) emissions may be important. In this experiment, diet types representing either forage-only or mixed diets were examined for their effects on CH4 and N emissions from animals and their slurries in 18 lactating cows. Apart from a hay-only diet, treatments included two mixed diets consisting of maize stover, pelleted whole maize plants and gluten or barley straw and grain and soy bean meal. The diets were balanced in crude protein and net energy for lactation. After adaptation, data and samples were collected for 8 days including a 2-day CH4 measurement in respiratory chambers. Faeces and urine, combined proportionately according to excretion, were used to determine slurry-derived CH4 and N emissions. Slurry was stored for 15 weeks at either 14°C or 27°C, and temperatures were classified as 'cool' and 'warm', respectively. The low-starch hay-only diet had high organic matter and fibre digestibility and proved to be equally effective on the cows' performance as mixed diets. The enteric CH4 formation remained unaffected by the diet except when related to digested fibre. In this case emission was lowest with the hay-only diet (61 v. 88 to 101 g CH4/kg digested NDF). Feeding the hay diet resulted in the highest slurry-CH4 production after 7 weeks of storage at 14°C and 27°C, and after 15 weeks at 14°C. CH4 emissions were, in general, about 10-fold higher at 27°C compared with 14°C but only after 15 weeks of storage. Urinary N losses were highest with the barley diet and lowest with the maize diet. There was a trend towards similar differences in N losses from the slurry of these cows (significant at 14°C). However, contrary to CH4, slurry-N emissions seemed to be temperature-independent. In conclusion, energetically balanced diets proved to be widely equivalent in their emission potential when combining animal and their slurry, this even at a clearly differing forage : concentrate ratio. The variation in CH4 emission from slurry stored shortly or at cold temperature for 15 weeks was of low importance as such conditions did not support methanogenesis in slurry anyway. 相似文献
6.
A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle 总被引:1,自引:0,他引:1
B. J. Hayes A. J. Chamberlain S. Maceachern K. Savin H. McPartlan I. MacLeod L. Sethuraman M. E. Goddard 《Animal genetics》2009,40(2):176-184
A number of cattle breeds have become highly specialized for milk or beef production, following strong artificial selection for these traits. In this paper, we compare allele frequencies from 9323 single nucleotide polymorphism (SNP) markers genotyped in dairy and beef cattle breeds averaged in sliding windows across the genome, with the aim of identifying divergently selected regions of the genome between the production types. The value of the method for identifying selection signatures was validated by four sources of evidence. First, differences in allele frequencies between dairy and beef cattle at individual SNPs were correlated with the effects of those SNPs on production traits. Secondly, large differences in allele frequencies generally occurred in the same location for two independent data sets (correlation 0.45) between sliding window averages. Thirdly, the largest differences in sliding window average difference in allele frequencies were found on chromosome 20 in the region of the growth hormone receptor gene, which carries a mutation known to have an effect on milk production traits in a number of dairy populations. Finally, for the chromosome tested, the location of selection signatures between dairy and beef cattle was correlated with the location of selection signatures within dairy cattle. 相似文献
7.
《Animal : an international journal of animal bioscience》2016,10(3):418-425
This study was conducted to evaluate the effect of dietary addition of cinnamon oil (CIN), cinnamaldehyde (CDH), or monensin (MON) on enteric methane (CH4) emission in dairy cows. Eight multiparous lactating Holstein cows fitted with ruminal cannulas were used in a replicated 4×4 Latin square design (28-day periods). Cows were fed (ad libitum) a total mixed ration ((TMR); 60 : 40 forage : concentrate ratio, on a dry matter (DM) basis) not supplemented (CTL), or supplemented with CIN (50 mg/kg DM intake), CDH (50 mg/kg DM intake), or monensin (24 mg/kg of DM intake). Dry matter intake (DMI), nutrient digestibility, N retention, and milk performance were measured over 6 consecutive days. Ruminal degradability of the basal diet (with no additive) was assessed using in sacco incubations (0, 2, 4, 8, 16, 24, 48, 72 and 96 h). Ruminal fermentation characteristics (pH, volatile fatty acids (VFA), and ammonia (NH3)) and protozoa were determined over 2 days. Enteric CH4 emissions were measured over 6 consecutive days using the sulfur hexafluoride (SF6) tracer gas technique. Adding CIN, CDH or MON to the diet had no effects on DMI, N retention, in sacco ruminal degradation and nutrient digestibility of the diet. Ruminal fermentation characteristics and protozoa numbers were not modified by including the feed additives in the diet. Enteric CH4 emission and CH4 energy losses averaged 491 g/day and 6.59% of gross energy intake, respectively, and were not affected by adding CIN, CDH or MON to the diet. Results of this study indicate that CIN, CDH and MON are not viable CH4 mitigation strategies in dairy cows. 相似文献
8.
Advantages of breeding schemes using genetic marker information and/or multiple ovulation and embryo transfer (MOET) technology over the traditional approach were extensively evaluated through simulation. Milk yield was the trait of interest and QTL was the genetic marker utilized. Eight dairy cattle breeding scenarios were considered, i.e., traditional progeny testing breeding scheme (denoted as STANPT), GASPT scheme including a pre-selection of young bulls entering progeny testing based on their own QTL information, MOETPT scheme using MOET technology to generate young bulls and a selection of young bulls limited within the full-sib family, GAMOPT scheme adopting both QTL pre-selection and MOET technology, COMBPT scheme using a mixed linear model which considered QTL genotype instead of the BLUP model in GAMOPT, and three non-progeny testing schemes, i.e. the MOET, GAMO and COMB schemes, corresponding to MOETPT, GAMOPT and COMBPT with progeny testing being part of the system. Animals were selected based on their breeding value which was estimated under an animal model framework. Sequential selection over 17 years was performed in the simulations and 30 replicates were designed for each scenario. The influences of using QTL information and MOET technology on favorable QTL allele frequency, true breeding values, polygenetic breeding values and the accumulated genetic superiority were extensively evaluated, for five different populations including active sires, lactating cows, bull dams, bull sires, and young bulls. The results showed that the combined schemes significantly outperformed other approaches wherein accumulated true breeding value progressed. The difference between schemes exclusively using QTL information or MOET technology was not significant. The STANPT scheme was the least efficient among the 8 schemes. The schemes using MOET technology had a higher polygenetic response than others in the 17th year. The increases of frequency of the favorable QTL allele varied more greatly across the 3 male groups than in the lactating cows group. The accumulated genetic superiorities of the GASPT scheme, MOETPT scheme, GAMOPT scheme, COMBPT scheme, MOET scheme, GAMO scheme and COMB scheme over the STANPT scheme were 8.42%, 3.59%, 14.58%, 18.54%, 4.12%, 14.12%, 16.50% in active sires and 2.70%, 5.00%, 11.05%, 12.78%, 7.51%, 17.12%, 25.38% in lactating cows. Supported by Key Project for Introducing Advanced International Agriculture Science & Technologies (Grant No. 2006-G48), the National Key Basic Research and Development Program of China (Grant No. 2006CB102107) and National Key Technology Research and Development Program of China (Grant No. 2006BAD04A01). 相似文献
9.
《Animal : an international journal of animal bioscience》2018,12(8):1662-1671
The calving interval (CI) can potentially impact the economic results of dairy farms. This study highlighted the most profitable CI and innovated by describing this optimum as a function of the feeding system of the farm. On-farm data were used to represent real farm conditions. A total of 1832 accounts of farms recorded from 2007 to 2014 provided economic, technical and feeding information per herd and per year. A multiple correspondence analysis created four feeding groups: extensive, low intensive, intensive and very intensive herds. The gross margin and some of its components were corrected to account for the effect of factors external to the farm, such as the market, biological status, etc. Then the corrected gross margin (cGMc) and its components were modelled by CI parameters in each feeding system by use of GLM. The relationship between cGMc and the proportion of cows with CI<380 days in each feeding group showed that keeping most of the cows in the herd with CI near to 1 year was not profitable for most farms (for the very intensive farms there was no effect of the proportion). Moreover, a low proportion of cows (0% to 20%) with a near-to-1-year CI was not profitable for the extensive and low intensive farms. Extending the proportion of cows with CI beyond 459 days until 635 days (i.e. data limitation) caused no significant economic loss for the extensive and low intensive farms, but was not profitable for the intensive and very intensive farms. Variations of the milk and feeding components explained mainly these significant differences of gross margin. A link between the feeding system and persistency, perceptible in the milk production and CI shown by the herd, could explain the different relationships observed between the extent of CI and the economic results in the feeding groups. This herd-level study tended to show different economic optima of CI as a function of the feeding system. A cow-level study would specify these tendencies to give CI objectives to dairy breeders as a function of their farm characteristics. 相似文献
10.
In some situations, it is worthwhile to change not only the mean, but also the variability of traits by selection. Genetic variation in residual variance may be utilised to improve uniformity in livestock populations by selection. The objective was to investigate the effects of genetic parameters, breeding goal, number of progeny per sire and breeding scheme on selection responses in mean and variance when applying index selection. Genetic parameters were obtained from the literature. Economic values for the mean and variance were derived for some standard non-linear profit equations, e.g. for traits with an intermediate optimum. The economic value of variance was in most situations negative, indicating that selection for reduced variance increases profit. Predicted responses in residual variance after one generation of selection were large, in some cases when the number of progeny per sire was at least 50, by more than 10% of the current residual variance. Progeny testing schemes were more efficient than sib-testing schemes in decreasing residual variance. With optimum traits, selection pressure shifts gradually from the mean to the variance when approaching the optimum. Genetic improvement of uniformity is particularly interesting for traits where the current population mean is near an intermediate optimum. 相似文献
11.
《Animal : an international journal of animal bioscience》2015,9(9):1567-1576
The objectives of this study were to investigate the individual variation, repeatability and correlation of methane (CH4) production from dairy cows measured during 2 different years. A total of 21 dairy cows with an average BW of 619±14.2 kg and average milk production of 29.1±6.5 kg/day (mean±s.d.) were used in the 1st year. During the 2nd year, the same cows were used with an average BW of 640±8.0 kg and average milk production of 33.4±6.0 kg/day (mean±s.d.). The cows were housed in a loose housing system fitted with an automatic milking system (AMS). A total mixed ration was fed to the cows ad libitum in both years. In addition, they were offered concentrate in the AMS based on their daily milk yield. The CH4 and CO2 production levels of the cows were analysed using a Gasmet DX-4030. The estimated dry matter intake (EDMI) was 19.8±0.96 and 23.1±0.78 (mean±s.d.), and the energy-corrected milk (ECM) production was 30.8±8.03 and 33.7±5.25 kg/day (mean±s.d.) during the 1st and 2nd year, respectively. The EDMI and ECM had a significant influence (P<0.001) on the CH4 (l/day) yield during both years. The daily CH4 (l/day) production was significantly higher (P<0.05) during the 2nd year compared with the 1st year. The EDMI (described by the ECM) appeared to be the key factor in the variation of CH4 release. A correlation (r=0.54) of CH4 production was observed between the years. The CH4 (l/day) production was strongly correlated (r=0.70) between the 2 years with an adjusted ECM production (30 kg/day). The diurnal variation of CH4 (l/h) production showed significantly lower (P<0.05) emission during the night (0000 to 0800 h). The between-cows variation of CH4 (l/day, l/kg EDMI and l/kg ECM) was lower compared with the within-cow variation for the 1st and 2nd years. The repeatability of CH4 production (l/day) was 0.51 between 2 years. In conclusion, a higher EDMI (kg/day) followed by a higher ECM (kg/day) showed a higher CH4 production (l/day) in the 2nd year. The variations of CH4 (l/day) among the cows were lower than the within-cow variations. The CH4 (l/day) production was highly repeatable and, with an adjusted ECM production, was correlated between the years. 相似文献
12.
《Animal : an international journal of animal bioscience》2018,12(9):1981-1989
Considering economic and environmental issues is important in ensuring the sustainability of dairy farms. The objective of this study was to investigate univariate relationships between lactating dairy cow gastro-enteric methane (CH4) production predicted from milk mid-IR (MIR) spectra and technico-economic variables by the use of large scale and on-farm data. A total of 525 697 individual CH4 predictions from milk MIR spectra (MIR-CH4 (g/day)) of milk samples collected on 206 farms during the Walloon milk recording scheme were used to create a MIR-CH4 prediction for each herd and year (HYMIR-CH4). These predictions were merged with dairy herd accounting data. This allowed a simultaneous study of HYMIR-CH4 and 42 technical and economic variables for 1024 herd and year records from 2007 to 2014. Pearson correlation coefficients (r) were used to assess significant relationships (P<0.05). Low HYMIR-CH4 was significantly associated with, amongst others, lower fat and protein corrected milk (FPCM) yield (r=0.18), lower milk fat and protein content (r=0.38 and 0.33, respectively), lower quantity of milk produced from forages (r=0.12) and suboptimal reproduction and health performance (e.g. longer calving interval (r=−0.21) and higher culling rate (r=−0.15)). Concerning economic results, low HYMIR-CH4 was significantly associated with lower gross margin per cow (r=0.19) and per litre FPCM (r=0.09). To conclude, this study suggested that low lactating dairy cow gastro-enteric CH4 production tended to be associated with more extensive or suboptimal management practices, which could lead to lower profitability. The observed low correlations suggest complex interactions between variables due to the use of on-farm data with large variability in technical and management practices. 相似文献
13.
《Animal : an international journal of animal bioscience》2016,10(1):34-43
Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH4) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH4 production by lactating dairy cows. In a randomised block design, 54 lactating Holstein–Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH4 production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH4 production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH4 production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH4 emission intensity increased per units of FPCM (15.0±1.00 g CH4/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH4/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH4/kg) by 7% and gross energy intake (7.0±0.14% CH4) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH4 emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH4 production with a higher N fertilisation rate, CH4 emission intensity remains unchanged. A significant reduction of CH4 emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity. 相似文献
14.
《Animal : an international journal of animal bioscience》2015,9(11):1795-1806
Many feeding trials have been conducted to quantify enteric methane (CH4) production in ruminants. Although a relationship between diet composition, rumen fermentation and CH4 production is generally accepted, the efforts to quantify this relationship within the same experiment remain scarce. In the present study, a data set was compiled from the results of three intensive respiration chamber trials with lactating rumen and intestinal fistulated Holstein cows, including measurements of rumen and intestinal digestion, rumen fermentation parameters and CH4 production. Two approaches were used to calculate CH4 from observations: (1) a rumen organic matter (OM) balance was derived from OM intake and duodenal organic matter flow (DOM) distinguishing various nutrients and (2) a rumen carbon balance was derived from carbon intake and duodenal carbon flow (DCARB). Duodenal flow was corrected for endogenous matter, and contribution of fermentation in the large intestine was accounted for. Hydrogen (H2) arising from fermentation was calculated using the fermentation pattern measured in rumen fluid. CH4 was calculated from H2 production corrected for H2 use with biohydrogenation of fatty acids. The DOM model overestimated CH4/kg dry matter intake (DMI) by 6.1% (R2=0.36) and the DCARB model underestimated CH4/kg DMI by 0.4% (R2=0.43). A stepwise regression of the difference between measured and calculated daily CH4 production was conducted to examine explanations for the deviance. Dietary carbohydrate composition and rumen carbohydrate digestion were the main sources of inaccuracies for both models. Furthermore, differences were related to rumen ammonia concentration with the DOM model and to rumen pH and dietary fat with the DCARB model. Adding these parameters to the models and performing a multiple regression against observed daily CH4 production resulted in R2 of 0.66 and 0.72 for DOM and DCARB models, respectively. The diurnal pattern of CH4 production followed that of rumen volatile fatty acid (VFA) concentration and the CH4 to CO2 production ratio, but was inverse to rumen pH and the rumen hydrogen balance calculated from 4×(acetate+butyrate)/2×(propionate+valerate). In conclusion, the amount of feed fermented was the most important factor determining variations in CH4 production between animals, diets and during the day. Interactions between feed components, VFA absorption rates and variation between animals seemed to be factors that were complicating the accurate prediction of CH4. Using a ruminal carbon balance appeared to predict CH4 production just as well as calculations based on rumen digestion of individual nutrients. 相似文献
15.
《Animal : an international journal of animal bioscience》2017,11(4):591-599
The adaptation of dairy cows to methane (CH4)-mitigating feed additives was evaluated using the in vitro gas production (GP) technique. Nine rumen-fistulated lactating Holstein cows were grouped into three blocks and within blocks randomly assigned to one of three experimental diets: Control (CON; no feed additive), Agolin RuminantR (AR; 0.05 g/kg dry matter (DM)) or lauric acid (LA; 30 g/kg DM). Total mixed rations composed of maize silage, grass silage and concentrate were fed in a 40 : 30 : 30 ratio on DM basis. Rumen fluid was collected from each cow at days −4, 1, 4, 8, 15 and 22 relative to the introduction of the additives in the diets. On each of these days, a 48-h GP experiment was performed in which rumen fluid from each individual donor cow was incubated with each of the three substrates that reflected the treatment diets offered to the cows. DM intake was on average 19.8, 20.1 and 16.2 kg/day with an average fat- and protein-corrected milk production of 30.7, 31.7 and 26.2 kg/day with diet CON, AR and LA, respectively. In general, feed additives in the donor cow diet had a larger effect on gas and CH4 production than the same additives in the incubation substrate. Incubation substrate affected asymptotic GP, half-time of asymptotic CH4 production, total volatile fatty acid (VFA) concentration, molar proportions of propionate and butyrate and degradation of organic matter (OMD), but did not affect CH4 production. No substrate×day interactions were observed. A significant diet×day interaction was observed for in vitro gas and CH4 production, total VFA concentration, molar proportions of VFA and OMD. From day 4 onwards, the LA diet persistently reduced gas and CH4 production, total VFA concentration, acetate molar proportion and OMD, and increased propionate molar proportion. In vitro CH4 production was reduced by the AR diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was greater, and that of acetate smaller, for the AR diet than for the CON diet on day 8, but not on days 15 and 22. Overall, the data indicate a short-term effect of AR on CH4 production, whereas the CH4-mitigating effect of LA persisted. 相似文献
16.
Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive 总被引:1,自引:0,他引:1
Zhou M Chung YH Beauchemin KA Holtshausen L Oba M McAllister TA Guan LL 《Journal of applied microbiology》2011,111(5):1148-1158
Aims: To investigate the relationship between ruminal methanogen community and host enteric methane (CH4) production in lactating dairy cows fed diets supplemented with an exogenous fibrolytic enzyme additive. Methods and Results: Ecology of ruminal methanogens from dairy cows fed with or without exogenous fibrolytic enzymes was examined using PCR–denaturing gradient gel electrophoresis (PCR–DGGE) analyses and quantitative real‐time PCR (qRT‐PCR). The density of methanogens was not affected by the enzyme additive or sampling times, and no relationship was observed between the total methanogen population and CH4 yield (as g per head per day or g kg?1 DMI). The PCR–DGGE profiles consisted of 26 distinctive bands, with two bands similar to Methanogenic archaeon CH1270 negatively correlated, and one band similar to Methanobrevibacter gottschalkii strain HO positively correlated, with CH4 yield. Three bands similar to Methanogenic archaeon CH1270 or Methanobrevibacter smithii ATCC 35061 appeared after enzyme was added. Conclusions: Supplementing a dairy cow diet with an exogenous fibrolytic enzyme additive increased CH4 yield and altered the composition of the rumen methanogen community, but not the overall density of methanogens. Significance and Impact of the Study: This is the first study to identify the correlation between methanogen ecology and host CH4 yield from lactating dairy cows. 相似文献
17.
The efficiency of the French marker-assisted selection (MAS) was estimated by a simulation study. The data files of two different time periods were used: April 2004 and 2006. The simulation method used the structure of the existing French MAS: same pedigree, same marker genotypes and same animals with records. The program simulated breeding values and new records based on this existing structure and knowledge on the QTL used in MAS (variance and frequency). Reliabilities of genetic values of young animals (less than one year old) obtained with and without marker information were compared to assess the efficiency of MAS for evaluation of milk, fat and protein yields and fat and protein contents. Mean gains of reliability ranged from 0.015 to 0.094 and from 0.038 to 0.114 in 2004 and 2006, respectively. The larger number of animals genotyped and the use of a new set of genetic markers can explain the improvement of MAS reliability from 2004 to 2006. This improvement was also observed by analysis of information content for young candidates. The gain of MAS reliability with respect to classical selection was larger for sons of sires with genotyped progeny daughters with records. Finally, it was shown that when superiority of MAS over classical selection was estimated with daughter yield deviations obtained after progeny test instead of true breeding values, the gain was underestimated. 相似文献
18.
Intramural aeromycological survey was performed at the Central Milk Dairy, Calcutta, covering eight locations within the Dairyusing
Burkard personal volumetric air sampler. The locations were butter cold storage (−2 °C), cold store (8 °C), packaging section
(23 °C), milk processing section (24 °C), reconstituent of skimmed milk (24 °C), quality control lab (25 °C), raw milk reception
(28 °C) and loading dock (26 °C). A number of fungal spores, conidia and mycelia were recorded in different rooms: the highest
spore quantity was recorded in the packaging section (23 °C) and the minimum at the butter cold store (−2 °C). The dominant
spores consisted of Aspergillus niger, A flavus,Cladosporium sp., Fusarium sp., Curvularia sp.,Alternaria sp., Torula sp., Myrotheciumsp., Helminthosporium sp., Periconia sp.,Nigrospora sp. and Pithomyces sp.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
Cattle production faces new challenges regarding sustainability with its three pillars - economic, societal and environmental. The following three main factors will drive dairy cattle selection in the future: (1) During a long period, intensive selection for enhanced productivity has deteriorated most functional traits, some reaching a critical point and needing to be restored. This is especially the case for the Holstein breed and for female fertility, mastitis resistance, longevity and metabolic diseases. (2) Genomic selection offers two new opportunities: as the potential genetic gain can be almost doubled, more traits can be efficiently selected; phenotype recording can be decoupled from selection and limited to several thousand animals. (3) Additional information from other traits can be used, either from existing traditional recording systems at the farm level or from the recent and rapid development of new technologies and precision farming. Milk composition (i.e. mainly fatty acids) should be adapted to better meet human nutritional requirements. Fatty acids can be measured through a new interpretation of the usual medium infrared spectra. Milk composition can also provide additional information about reproduction and health. Modern milk recorders also provide new information, that is, on milking speed or on the shape of milking curves. Electronic devices measuring physiological or activity parameters can predict physiological status like estrus or diseases, and can record behavioral traits. Slaughterhouse data may permit effective selection on carcass traits. Efficient observatories should be set up for early detection of new emerging genetic defects. In the near future, social acceptance of cattle production could depend on its capacity to decrease its ecological footprint. The first solution consists in increasing survival and longevity to reduce replacement needs and the number of nonproductive animals. At the individual level, selection on rumen activity may lead to decreased methane production and concomitantly to improved feed efficiency. A major effort should be dedicated to this new field of research and particularly to rumen flora metagenomics. Low input in cattle production is very important and tomorrow's cow will need to adapt to a less intensive production environment, particularly lower feed quality and limited care. Finally, global climate change will increase pathogen pressure, thus more accurate predictors for disease resistance will be required. 相似文献
20.
《Animal : an international journal of animal bioscience》2013,7(11):1875-1883
The effects of feeding total mixed ration (TMR) or pasture forage from a perennial sward under a management intensive grazing (MIG) regimen on grain intake and enteric methane (EM) emission were measured using chambers. Chamber measurement of EM was compared with that of SF6 employed both within chamber and when cows grazed in the field. The impacts of the diet on farm gate greenhouse gas (GHG) emission were also postulated using the results of existing life cycle assessments. Emission of EM was measured in gas collection chambers in Spring and Fall. In Spring, pasture forage fiber quality was higher than that of the silage used in the TMR (47.5% v. 56.3% NDF; 24.3% v. 37.9% ADF). Higher forage quality from MIG subsequently resulted in 25% less grain use relative to TMR (0.24 v. 0.32 kg dry matter/kg milk) for MIG compared with TMR. The Fall forage fiber quality was still better, but the higher quality of MIG pasture was not as pronounced as that in Spring. Neither yield of fat-corrected milk (FCM) which averaged 28.3 kg/day, nor EM emission which averaged 18.9 g/kg dry matter intake (DMI) were significantly affected by diet in Spring. However, in the Fall, FCM from MIG (21.3 kg/day) was significantly lower than that from TMR (23.4 kg/day). Despite the differences in FCM yield, in terms of EM emission that averaged 21.9 g/kg DMI was not significantly different between the diets. In this study, grain requirement, but not EM, was a distinguishing feature of pasture and confinement systems. Considering the increased predicted GHG emissions arising from the production and use of grain needed to boost milk yield in confinement systems, EM intensity alone is a poor predictor of the potential impact of a dairy system on climate forcing. 相似文献