首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2018,24(11):973-981
Objective: To evaluate the efficacy and safety of insulin glargine 300 U/mL (Gla-300) and insulin glargine 100 U/mL (Gla-100) in patients with type 2 diabetes (T2D) who reached prebreakfast self-monitored plasma glucose (SMPG) levels <100 and <130 mg/dL.Methods: This was a post hoc analysis of insulin-naïve (EDITION 3, NCT01676220) and experienced (EDITION 2, NCT01499095) patients with uncontrolled T2D, randomized to 6 months of Gla-300 versus Gla-100 treatment. Endpoints included glycated hemoglobin A1c change, hypoglycemia incidence, and event rates. Separate comparisons were done for patients achieving prebreak-fast fasting glucose of <100 versus ≥100 mg/dL and <130 versus ≥130 mg/dL.Results: Efficacy did not differ significantly between treatments in either study. Overall, basal insulin doses were ~10% higher with Gla-300 versus Gla-100. EDITION 2: overall and documented (≤70 mg/dL) hypoglycemia rates were significantly lower with Gla-300 versus Gla-100 in all SMPG groups except <100 mg/dL; nocturnal hypoglycemia rates were significantly lower with Gla-300 in all SMPG groups. EDITION 3: overall hypoglycemia rates were significantly lower with Gla-300 in patients with SMPG ≥100 mg/dL and those with SMPG <130 mg/dL; documented hypoglycemia rates were significantly lower in all SMPG groups except ≥130 mg/dL. Nocturnal and nocturnal documented hypoglycemia rates did not differ by treatment group. Hypoglycemia incidence did not differ by treatment in any SMPG group.Conclusion: In patients with T2D initiating basal insulin or previously treated for ≥6 months with basal insulin, Gla-300 provides similar efficacy to Gla-100 and reduces risk of hypoglycemia for many patients, despite a ~10% higher insulin dose.Abbreviations: A1C = glycated hemoglobin A1c; ADA = American Diabetes Association; Gla-100 = insulin glargine 100 U/mL; Gla-300 = insulin glargine 100 U/mL; OAD = oral antidiabetes drug; SMPG = self-monitored plasma glucose; T2D = type 2 diabetes  相似文献   

2.
《Endocrine practice》2018,24(3):312-314
Hypoglycemia is the major side effect of insulin therapy. The elderly are especially vulnerable to episodes of hypoglycemia, and with greater risks of complications such as falls. Two new long-acting basal insulins, glargine-300 (Gla-300) and degludec, are associated with lower incidences of hypoglycemia than previously available basal insulins. One of them, Gla-300, was studied in the elderly and has a lower incidence of hypoglycemia in patients over 65 years old. These new data should be incorporated into decision making when treating the elderly patient with insulin, whether they have type 1 or 2 diabetes.Abbreviations:A1c = glycated hemoglobin A1cGla-100 = glargine 100 U/mLGla-300 = glargine 300 U/mLGLP-1 RA = glucagon-like peptide-1 receptor analogue  相似文献   

3.
《Endocrine practice》2016,22(12):1393-1400
Objective: Hypoglycemia remains one of the main challenges of insulin therapy. To reduce insulin-related hypoglycemia at our institution, we restricted inpatient ordering of high glargine doses (≥0.5 U/kg/day) to endocrine staff in May 2013. This retrospective cohort study assesses its effect on hypoglycemia and glycemic control within 48 hours of admission (ADM).Methods: We identified 692 adult patients hospitalized at Boston Medical Center who received glargine upon ADM from November 1, 2012 through April 30, 2013 as the pre-intervention group, and 651 adult patients admitted between November 1, 2013 and April 30, 2014 as the postintervention group. Demographics, medical history, home insulin regimen, concurrent oral diabetes medications or glucocorticoid administration, ADM serum creatinine, all blood glucose levels (BG) ≤48 hours of ADM, and hemoglobin A1c values ≤3 months were assessed. Hypoglycemia was defined as BG ≤70 mg/dL, and hyperglycemia as BG ≥200 mg/dL. Multivariable regression models assessed potential associations between covariates and incidence of hypoglycemia and average BG ≤48 hours of ADM.Results: Demographics were similar between groups. Significantly less patients received high-dose glargine in the post-intervention group (5.2% vs. 0.3%, P<.001). Incidences of hypoglycemia were significantly lower in the postintervention group (20.9% vs. 17.8%, P<.001 per ADM; 3.4% vs. 2.3%, P = .001 per BG measurements [BGM]). Mean BG levels ≤48 hours of ADM and incidence of hyperglycemia were not significantly different. The adjusted incident rate ratio of hypoglycemia was 0.63 per ADM and 0.74 per BGM in the postintervention group compared to the pre-intervention group (P = .001 and P = .063, respectively).Conclusion: We found that implementation of a restriction on high doses of glargine resulted in lower rates of hypoglycemia without worsening glycemic control.Abbreviations:ADM = admissionBG = blood glucoseBGM = blood glucose measurementsBMC = Boston Medical CenterBMI = body mass indexEMR = electronic medical recordHgbA1c = hemoglobin A1cIRR = incidence rate ratioNPH = neutral protamine HagedornTDD = total daily doseT2D = type 2 diabetes  相似文献   

4.
《Endocrine practice》2014,20(2):120-128
ObjectiveTo evaluate the effect of diabetes duration on efficacy and safety in patients with type 2 diabetes mellitus (T2DM) using insulin glargine versus comparator (oral antidiabetic drugs [OADs], dietary changes, or other insulins).MethodsData were pooled from randomized controlled clinical trials conducted in adults with T2DM with at least 24-week treatment with insulin glargine or a comparator, where predefined insulin titration algorithms were utilized to achieve fasting plasma glucose (FPG) concentrations of ≤ 100 mg/dL. Glycated hemoglobin A1C (A1C), FPG, and insulin dose and safety (hypoglycemia) outcomes were analyzed.ResultsNine studies were included in the analysis of 2,930 patients. Patients with shorter duration of diabetes were more likely to have greater reductions in A1C compared with those who had longer-duration disease (P < .0001). Disease duration did not affect change in FPG concentrations (P = .9017), but lower weight-adjusted insulin dose was correlated with longer-duration disease (P < .0001). Patients with longer-duration diabetes had increased risks of symptomatic hypoglycemia, confirmed hypoglycemia (self-monitored blood glucose < 50 mg/dL and < 70 mg/dL), and nocturnal hypoglycemia (all P < .001). No significant relationship was found between severe hypoglycemia and duration of diabetes. However, treatment with insulin glargine lowered A1C values more effectively than comparator treatments with fewer hypoglycemic episodes.ConclusionPatients with shorter-duration T2DM better achieved target A1C levels and had less hypoglycemia than those with longer disease duration. Insulin glargine was associated with reduced A1C and fewer hypoglycemic events than comparators, regardless of disease duration. (Endocr Pract. 2014;20:120-128)  相似文献   

5.
《Endocrine practice》2018,24(9):796-804
Objective: In the DUAL (Dual Action of Liraglutide and Insulin Degludec in Type 2 Diabetes) VII trial, IDegLira (a combination of insulin degludec and liraglutide) was compared with insulin glargine U100 plus insulin aspart. Both treatment approaches achieved similar glycemic control, but there were differences in hypoglycemia, changes in body weight, and injection frequency. The aim of the present analysis was to assess the short-term cost effectiveness of IDegLira versus insulin glargine U100 plus insulin aspart for treatment of patients with type 2 diabetes mellitus not meeting glycemic targets on basal insulin in the U.S. setting.Methods: A cost-utility model was developed to evaluate the clinical and economic outcomes associated with the 2 treatments over a 1-year time horizon, capturing the impact on quality of life of hypoglycemic events, body mass index, and injection frequency. Costs were captured from a healthcare payer perspective in 2017 U.S. dollars ($).Results: IDegLira was associated with improved quality of life by 0.12 quality-adjusted life years compared with insulin glargine U100 plus insulin aspart. The key drivers of this difference were reduced injection frequency and hypoglycemic events avoided. IDegLira was associated with increased annual drug costs, but this was entirely offset by reduced needle costs and reduced costs of self-monitoring of blood glucose testing. IDegLira was associated with total annual cost savings of $743 per patient.Conclusion: IDegLira was found to improve quality-adjusted life expectancy and reduce costs when compared with insulin glargine U100 plus insulin aspart for treatment of patients with type 2 diabetes not achieving glycemic control on basal insulin in the U.S. setting.Abbreviations: ADA = American Diabetes Association; BMI = body mass index; CI = confidence interval; DUAL = Dual Action of Liraglutide and Insulin Degludec in Type 2 Diabetes; GLP-1 = glucagon-like peptide-1; HbA1c = glycated hemoglobin; ICER = incremental cost-effectiveness ratio; IU = international units; QALY = quality-adjusted life year; SMBG = self-monitoring of blood glucose  相似文献   

6.
《Endocrine practice》2010,16(4):588-599
ObjectiveTo compare glycemic control with add-on insulin glargine versus pioglitazone treatment in patients with type 2 diabetes.MethodsThis 48-week, multicenter, parallel-group, open-label study randomized 389 adults with poorly controlled type 2 diabetes (glycated hemoglobin A1c [A1C], 8.0% to 12.0%), despite ≥ 3 months of sulfonylurea or metformin monotherapy, to receive add-on therapy with insulin glargine or pioglitazone. Outcomes included A1C change from baseline to end point (primary), percentage of patients achieving A1C levels ≤ 7.0%, and changes from baseline in fasting plasma glucose, body mass index, weight, and serum lipids. The safety analysis included incidence of adverse events and rates of hypoglycemia.ResultsAt end point, insulin glargine yielded a significantly greater reduction in A1C in comparison with pioglitazone (-2.48% versus -1.86%, respectively; 95% confidence interval, -0.93 to -0.31; P = .0001, 48-week modified intent-to-treat population). Insulin glargine also yielded significantly greater reductions in fasting plasma glucose at all time points (end point difference, -34.9 mg/ dL; 95% confidence interval, -47.6 to -22.2; P < .0001). In comparison with pioglitazone, insulin glargine resulted in a lower overall incidence of possibly related treatmentemergent adverse events (12.0% versus 20.7%) and fewer study discontinuations (2.2% versus 9.1%), but a higher rate (per patient-year) of confirmed clinically relevant hypoglycemic episodes (blood glucose < 70 mg/dL and all severe hypoglycemia) (4.97 versus 1.04; P <.0001) and severe hypoglycemia (0.07 versus 0.01; P = .0309). Weight and body mass index changes were similar between the 2 treatment groups.ConclusionThe addition of insulin glargine early in the diabetes treatment paradigm in patients for whom sulfonylurea or metformin monotherapy had failed resulted in significantly greater improvements in glycemic control in comparison with the addition of pioglitazone. Although severe hypoglycemia was more frequent in patients with insulin glargine therapy, hypoglycemic events occurred in < 5% of patients in the insulin glargine treatment group. (Endocr Pract. 2010;16:588-599)  相似文献   

7.
《Endocrine practice》2012,18(1):17-25
ObjectiveTo examine the long-term effects of combination insulin glargine/exenatide treatment on glycemic control.MethodsWe conducted a 24-month retrospective US chart review of patients with inadequately controlled type 2 diabetes (T2DM) and hemoglobin A1c (A1C) levels > 7.0% for whom glargine and exenatide were coprescribed in differing order (glargine added after exenatide [exenatide/glargine]; exenatide added after glargine [glargine/exenatide]). Treatment order groups were combined to form a pooled treatment group. Changes from baseline in A1C, patients with A1C ≤ 7.0%, body weight, glargine/exenatide daily dose, oral antidiabetic drug (OAD) use, and hypoglycemia were evaluated.ResultsTreatment groups were similar at baseline; however, patients in the glargine/exenatide group (n = 121) (vs exenatide/glargine group [n = 44]) had longer disease duration (11.8 vs 8.0 years) and took fewer OADs (1.7 vs 2.3). Overall, baseline A1C was 8.8 ± 1.3% and weight was 109.5 ± 25.3 kg. Significant A1C reductions emerged at month 6 and persisted throughout 24 months (vs baseline) in both treatment groups (pooled: –0.7 ± 1.6; P < .001), and 33.0% of patients achieved an A1C level ≤ 7.0%. After 24 months of exenatide/glargine, body weight remained unchanged (0.7 ± 8.3 kg; P = .640). With glargine/exenatide, body weight decreased (–2.5 ± 6.7 kg; P = .001). At month 24, daily glargine dose was 0.40 ± 0.23 units/kg for the exenatide/glargine group and 0.47 ± 0.30 units/kg for the glargine/exenatide group. Hypoglycemia frequency was similar in both treatment groups.ConclusionsRegardless of treatment order, long-term combined therapy with glargine and exenatide for up to 24 months in patients with inadequately controlled T2DM suggests reduction of A1C without significant weight gain or increased hypoglycemia risk. (Endocr Pract. 2012;18:17-25)  相似文献   

8.
《Endocrine practice》2011,17(1):41-50
ObjectiveTo compare efficacy and safety of biphasic insulin aspart 70/30 (BIAsp 30) with insulin (glargine) in type 2 diabetic patients who were not maintaining glycemic control on basal insulin and oral antidiabetic drugs.MethodsIn a 24-week, open-label, parallel-group trial, type 2 diabetic patients who were not maintaining glycemic control on basal insulin (glargine or neutral protamine Hagedorn) + oral antidiabetic drugs were randomly assigned to twice-daily BIAsp 30 + metformin or oncedaily glargine + metformin + secretagogues (secretagogues were discontinued in the BIAsp 30 arm).ResultsOne hundred thirty-seven patients were randomly assigned to the BIAsp 30 group and 143 patients were randomly assigned to the glargine group. Of 280 patients randomized, 229 (81.8%) completed the study. End-of-trial hemoglobin A1c reductions were − 1.3% (BIAsp 30) vs − 1.2% (glargine) (treatment difference: 95% confidence interval, − 0.06 [− 0.32 to 0.20]; P = .657). Of patients taking BIAsp 30, 27.3% reached a hemoglobin A1c level < 7.0% compared with 22.0% of patients taking glargine (treatment difference: P = .388). Glucose increment averaged over 3 meals was lower in the BIAsp 30 arm (treatment difference: − 17.8 mg/dL, P = .001). Fasting plasma glucose reductions from baseline were − 13.8 mg/ dL (BIAsp 30) vs − 42.5 mg/dL (glargine) (P = .0002). Final minor hypoglycemia rate, insulin dose, and weight change were higher in the BIAsp 30 arm (6.5 vs 3.4 events/patient per year, P <.05; 1.19 vs 0.63 U/kg; and 3.1 vs 1.4 kg, P = .0004, respectively).ConclusionsDespite not receiving secretagogues, patients taking BIAsp 30 + metformin achieved similar hemoglobin A1c levels and lower postprandial plasma glucose compared with those receiving glargine + metformin + secretagogues. The large improvement in the glargine group suggests the patients were not true basal failures at randomization. While switching to BIAsp 30 improves glycemic control in this patient population, remaining on basal insulin and optimizing the dose may be equally effective in the short term. (Endocr Pract. 2011;17:41-50)  相似文献   

9.
《Endocrine practice》2012,18(1):34-38
ObjectiveTo evaluate the use of U500 regular insulin therapy in insulin-resistant patients with type 2 diabetes mellitus who were previously treated with high-dosage U100 insulin regimens.Methods:At a large Veterans Affairs medical center, a retrospective chart review was performed of all patients whose U100 insulin regimens were converted to U500 regular insulin regimens using a protocol to ensure patient safety. Patients were followed up for longer than 6 months. Data reviewed included total daily dosage of insulin before and after regimen conversion and changes in hemoglobin A1c, body weight, lipids, and episodes of severe hypoglycemia.ResultsFifty-three patients met inclusion criteria. Average hemoglobin A1c level on U100 insulin regimens was 9.1 ± 1.7%, which decreased to 8.1 ± 1.3% (P < .001) after an average of 20 months (range, 6-52 months) on U500 insulin. The total daily insulin dosage at study end was not significantly greater on U500 (415 ± 166 units/day) than on U100 insulin (391 ± 120 units/day) (P = .34). Body weight did not change significantly (134 ± 29 kg vs 136 ± 30 kg, P = .18). There was a 20-mg/dL decrease in total cholesterol (P = .014). Triglyceride values decreased by 97 mg/dL (P = .005). Eight episodes of severe hypoglycemia were documented in patients treated with U500 insulin, but this was similar to the incidence in these same patients while treated with U100 insulin.ConclusionWe conclude that U500 insulin can be safely and effectively used in insulin-resistant patients with type 2 diabetes followed up at a large Veterans Affairs medical center using a protocol that ensures patients are thoroughly educated and carefully monitored. (Endocr Pract. 2012;18:34-38)  相似文献   

10.
《Endocrine practice》2014,20(4):285-292
ObjectiveThis meta-analysis of 5 trials from the Phase 3a insulin degludec (IDeg) clinical trial program evaluated the risk of hypoglycemia in a subset of subjects with type 2 diabetes (T2D) who required high basal insulin doses at the end of the trials.MethodsThis meta-analysis compared glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), basal insulin dose, body weight, and rates of overall and nocturnal confirmed hypoglycemia in a pooled population of T2D subjects using > 60 U basal insulin at trial completion. Five Phase 3a, open-label, randomized, treat-to-target, confirmatory 26-or 52-week trials with IDeg (n = 2,262) versus insulin glargine (IGlar) (n = 1,110) administered once daily were included. Overall confirmed hypoglycemia was defined as self-measured blood glucose < 56 mg/dL or any episode requiring assistance; nocturnal confirmed hypoglycemia had an onset between 00:01 and 05:59 am.ResultsMore than one-third of IDeg-(35%) and IGlar-(34%) treated T2D subjects required > 60 U of basal insulin daily at the ends of the trial. Patients achieved similar mean HbA1c values (estimated treatment difference [ETD] IDeg - IGlar: 0.05%, P = .44) while mean FPG values were lower with IDeg than IGlar (ETD: - 5.9 mg/ dL, P = .04) at end-of-trial. There was a 21% lower rate of overall confirmed hypoglycemic episodes for IDeg (estimated rate ratio [RR] IDeg/IGlar: 0.79, P = .02) and a 52% lower rate of nocturnal confirmed hypoglycemic episodes for IDeg (RR: 0.48, P < .01).ConclusionIn this post hoc meta-analysis, more than 30% of subjects with T2D required > 60 U/day of basal insulin at the end of the trials. In these individuals, IDeg achieves similar HbA1c reduction with significantly less overall and nocturnal confirmed hypoglycemia compared with IGlar. (Endocr Pract. 2014;20:285-292)  相似文献   

11.
《Endocrine practice》2016,22(6):653-665
Objective: To examine the influence of baseline U-100 insulin total daily dose (TDD) on clinical outcomes in severely insulin-resistant patients with inadequately controlled type 2 diabetes treated with human regular U-500 insulin (U-500R) from the perspective of current dosing recommendations.Methods: Data from a recent prospective, randomized trial comparing thrice-daily (TID) and twice-daily (BID) U-500R in 325 patients transitioned from highdose/high-volume U-100 insulin were analyzed across baseline U-100 TDD units and units/kg subgroups (≤300 units [n = 224, 68.9%] and >300 units [n = 101, 31.1%]; ≤2 units/kg [n = 96, 29.5%] and >2 units/kg [n = 229, 70.5%]). Subgroup effects on treatment differences were evaluated, and outcomes between treatment-pooled subgroups were compared.Results: At 24 weeks, significant reductions in glycated hemoglobin (HbA1c) were observed for all subgroups (range: -1.01% to -1.38%, P<.05). Within-subgroup treatment effects were similar with no treatment-by-subgroup interactions; however, a greater reduction was noted in the >300-units subgroup (P = .04). No TID/BID differences within subgroups or treatment-by-subgroup interactions were observed for TDD or weight increase from baseline. Overall hypoglycemia rates were similar between treatments (within subgroups) and showed no interactions. However, rates were higher in the >300-units subgroup for severe hypoglycemia (P = .04) and in both higher-dose subgroups for documented symptomatic hypoglycemia ≤70 mg/dL (P<.001, units; P = .001, units/kg).Conclusion: Both TID and BID U-500R were efficacious and safe across TDD subgroups, though higher hypoglycemia rates were observed in higher-dose, treatment-pooled subgroups. U-500R dosing recommendations have been updated accordingly.Abbreviations:AE = adverse eventBID = twice dailyHbA1c = glycated hemoglobinQID = 4 times dailyRCT = randomized clinical trialT2D = type 2 diabetesTDD = total daily doseTID = thrice dailyU-500R = human regular U-500 insulin  相似文献   

12.
《Endocrine practice》2015,21(2):143-157
ObjectiveSelf-adjustment of insulin dose is commonly practiced in Western patients with type 2 diabetes but is usually not performed in Asian patients. This multinational, 24-week, randomized study compared patient-led with physician-led titration of once-daily insulin glargine in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering agents.MethodsPatient-led (n = 275) or physician-led (n = 277) subjects followed the same dose-titration algorithm guided by self-monitored fasting blood glucose (FBG; target, 110 mg/dL [6.1 mmol/L]). The primary endpoint was change in mean glycated hemoglobin (HbA1c) at week 24 in the patient-led versus physician-led titration groups.ResultsPatient-led titration resulted in a significantly higher drop in HbA1c value at 24 weeks when compared with physician-led titration (− 1.40% vs. − 1.25%; mean difference, − 0.15; 95% confidence interval, − 0.29 to 0.00; P = .043). Mean decrease in FBG was greatest in the patient-led group (− 2.85 mmol/L vs. − 2.48 mmol/L; P = .001). The improvements in HbA1c and FBG were consistent across countries, with similar improvements in treatment satisfaction in both groups. Mean daily insulin dose was higher in the patient-led group (28.9 units vs. 22.2 units; P < .001). Target HbA1c of < 7.0% without severe hypoglycemia was achieved in 40.0% and 32.9% in the patient-led and physician-led groups, respectively (P = .086). Severe hypoglycemia was not different in the 2 groups (0.7%), with an increase in nocturnal and symptomatic hypoglycemia in the patient-led arm.ConclusionPatient-led insulin glargine titration achieved near-target blood glucose levels in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering drugs, demonstrating that Asian patients can self-uptitrate insulin dose effectively when guided. (Endocr Pract. 2015;21:143-157)  相似文献   

13.
14.
《Endocrine practice》2015,21(7):807-813
Objective: Few randomized studies have focused on the optimal management of non–intensive care unit patients with type 2 diabetes in Latin America. We compared the safety and efficacy of a basal-bolus regimen with analogues and human insulins in general medicine patients admitted to a University Hospital in Asunción, Paraguay.Methods: In a prospective, open-label trial, we randomized 134 nonsurgical patients with blood glucose (BG) between 140 and 400 mg/dL to a basal-bolus regimen with glargine once daily and glulisine before meals (n = 66) or Neutral Protamine Hagedorn (NPH) twice daily and regular insulin before meals (n = 68). Major outcomes included differences in daily BG levels and frequency of hypoglycemic events between treatment groups.Results: There were no differences in the mean daily BG (157 ± 37 mg/dL versus 158 ± 44 mg/dL; P = .90) or in the number of BG readings within target <140 mg/dL before meals (76% versus 74%) between the glargine/glulisine and NPH/regular regimens. The mean insulin dose in the glargine/glulisine group was 0.76 ± 0.3 units/kg/day (glargine, 22 ± 9 units/day; glulisine, 31 ± 12 units/day) and was not different compared with NPH/regular group (0.75 ± 0.3 units/kg/day [NPH, 28 ± 12 units/day; regular, 23 ± 9 units/day]). The overall prevalence of hypoglycemia (<70 mg/dL) was similar between patients treated with NPH/regular and glargine/glulisine (38% versus 35%; P = .68), but more patients treated with human insulin had severe (<40 mg/dL) hypoglycemia (7.6% versus 25%; P = .08). There were no differences in length of hospital stay or mortality between groups.Conclusion: The basal-bolus regimen with insulin analogues resulted in equivalent glycemic control and frequency of hypoglycemia compared to treatment with human insulin in hospitalized patients with diabetes.Abbreviations: BG = blood glucose BMI = body mass index HbA1c = glycated hemoglobin NPH = Neutral Protamine Hagedorn T2D = type 2 diabetes  相似文献   

15.
《Endocrine practice》2015,21(8):917-926
Objective: Meta-analysis to compare hypoglycemia rates of basal insulin degludec (IDeg) with insulin glargine (IGlar) in patients with diabetes achieving good glycemic control (hemoglobin A1c [HbA1c] <7% at end of trial).Methods: In a preplanned meta-analysis, patient data from 7 randomized, treat-to-target, 26- or 52-week trials in patients with type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) who administered IDeg (n = 2,899) or IGlar (n = 1,431) once daily were analyzed. Using a negative binomial regression model, this meta-analysis compared hypoglycemia rates in patients achieving HbA1c <7% at end of trial with IDeg (n = 1,347) and IGlar (n = 697).Results: In all trials, IDeg was noninferior to IGlar in HbA1c reduction from baseline. At end of trial, 2,044 patients (T2DM, n = 1,661; T1DM, n = 383) achieved HbA1c <7%. The overall confirmed hypoglycemia rate, defined as plasma glucose <56 mg/dL or severe hypoglycemia if requiring assistance, was significantly lower with IDeg versus IGlar (estimated rate ratio [ERR] IDeg:IGlar, 0.86; 95% confidence interval [CI], 0.76 to 0.98). The nocturnal confirmed hypoglycemia rate, defined as occurring between midnight and 6:00 am, was significantly lower with IDeg (ERR, 0.63; 95% CI, 0.52 to 0.77). In the maintenance period (16 weeks onward when average insulin dose and glycemic levels stabilized), the overall confirmed hypoglycemia rate was significantly lower (ERR, 0.79; 95% CI, 0.68 to 0.92) and the nocturnal confirmed hypoglycemia rate was significantly lower (ERR, 0.57; 95% CI, 0.45 to 0.72) with IDeg versus IGlar.Conclusion: Patients with T1DM and T2DM achieved HbA1c <7% with significantly lower rates of overall and nocturnal confirmed hypoglycemia with IDeg versus IGlar. The lower hypoglycemia rate with IDeg was more pronounced in the maintenance period.Abbreviations: ERR = estimated rate ratio; HbA1c = hemoglobin A1c; IDeg = insulin degludec; IGlar = insulin glargine; NPH = Neutral Protamine Hagedorn; PG = plasma glucose; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus  相似文献   

16.
《Endocrine practice》2021,27(8):790-797
ObjectiveMany patients with type 2 diabetes treated with premixed insulin gradually have inadequate glycemic control and switch to a basal-bolus regimen, which raises some concerns for weight gain and increased hypoglycemic risk. Switching to combination use of glp-1 agonist and basal insulin may be an alternative option.MethodsAfter a 12-week premixed human insulin 70/30 dosage optimization period, 200 patients with HbA1c of 7.0% to 10.0% were randomized into 24-week treatment groups with exenatide twice a day plus glargine or with aspart 70/30 twice a day.ResultsAfter 24 weeks, the patients receiving exenatide plus glargine (n = 90) had improved HbA1c control compared with those receiving aspart 70/30 (n = 90) (least squares mean change: ‒0.59 vs ‒0.13%; difference [95% CI]: ‒0.45 [‒0.74 to ‒0.17]) in the full analysis set population. Weight decreased 3.5 kg with exenatide and decreased 0.4 kg with aspart 70/30 (P < .001). The insulin dose was reduced 10.7 units/day (95% CI, ‒12.2 to ‒9.2 units; P < .001) with exenatide, and increased 9.7 units/day (95% CI, 8.2 to 11.2 units; P < .001) with aspart 70/30. The most common adverse events were gastrointestinal adverse effects in the exenatide group (nausea [21%], vomiting [16%], diarrhea [13%]). The incidence of hypoglycemia was similar in 2 groups (27% for exenatide and 38% for aspart 70/30; P = .1).ConclusionIn premixed human insulin‒treated patients with type 2 diabetes with inadequate glycemic control, switching to exenatide twice a day plus glargine was superior to aspart 70/30 twice a day for glycemic and weight control.  相似文献   

17.
《Endocrine practice》2013,19(3):485-493
ObjectivePerioperative glycemic control in critically ill cardiothoracic surgery patients may improve postsurgical outcomes. The objective of the study was to compare outcomes before and after the implementation of a protocol using subcutaneous (SC) glargine at transition from intravenous insulin infusion (IVII).MethodsIn August 2006, the Cleveland Clinic began using glargine and supplemental rapid-acting sliding scale insulin (SSI) at transition from IVII (glargine-SSI group). Before August 2006, only supplemental insulin was used (SSI-only group). The primary outcome was first blood glucose (BG1) after discontinuation of IVII. Secondary outcomes included the absolute difference between the last glucose before discontinuation of IVII (BG0) and BG1, mean glucose in the first 24 hours after discontinuation of IVII (BG24), need for SSI, and hypoglycemia.ResultsMean BG0, BG1, and BG24, and the difference between BG1 and BG0 and between BG24 and BG0 were not significantly different between groups. Diabetes mellitus (DM) patients who had received glargine had a lower mean difference between BG1 and BG0 and a lower mean BG24 than those who had not received glargine (14.6 mg/dL vs. 33.1 mg/dL; P = .20, and 163.8 mg/dL vs. 177.9 mg/dL; P = .29, respectively). A higher proportion of DM patients needed SSI than did non-DM patients (82% vs. 36%; P<.001).ConclusionGlargine administered at the cessation of IVII enabled less SSI coverage in diabetic patients subsequent to transition from IVII. However, there was no significant difference in BG control between the glargine-SSI and SSI-only groups. Prospective studies involving more patients are needed to show possible clinically significant benefits of this intervention. (Endocr Pract. 2013;19:485-493)  相似文献   

18.
《Endocrine practice》2019,25(2):144-155
Objective: The efficacy and safety of insulin degludec/liraglutide (IDegLira) in older patients has not yet been reported. This analysis aimed to evaluate the efficacy and safety of IDegLira in patients aged ≥65 years.Methods: A post hoc analysis compared results of patients aged ≥65 versus <65 years from DUAL II, III, and V. These were 26-week, phase 3, randomized, twoarm parallel, treat-to-target trials in patients already taking injectable glucose-lowering agents. We evaluated 311 patients aged <65 and 87 patients aged ≥65 years from DUAL II, 326 patients <65 years and 112 patients ≥65 years from DUAL III, and 412 patients <65 years and 145 patients ≥65 years from DUAL V. Patients were randomized to IDegLira or insulin degludec (DUAL II), IDegLira or unchanged glucagon-like peptide 1–receptor agonist (GLP-1RA) (DUAL III), or IDegLira or IGlar U100 (DUAL V).Results: In patients ≥65 years, hemoglobin A1C decreased to a greater extent with IDegLira than with comparators (estimated treatment differences, -1.0% &lsqb;-1.5; -0.6]95% confidence interval &lsqb;CI], -0.8% &lsqb;-1.0; -0.5]95% CI, and -0.9% &lsqb;-1.3; -0.6]95%CI) for DUAL II, V, and III, respectively; all P<.001). These mirrored results of patients <65 years of age. Hypoglycemia rates were lower with IDegLira versus basal insulin and higher versus unchanged GLP-1RA (estimated rate ratios, 0.5 &lsqb;0.2; 1.6]95% CI &lsqb;P = .242]; 0.3 &lsqb;0.1; 0.5]95% CI &lsqb;P<.001], and 11.8 &lsqb;3.3; 42.8]95% CI &lsqb;P<.001] for DUAL II, V, and III, respectively).Conclusion: Patients aged ≥65 years on basal insulin or GLP-1RA can improve glycemic control with IDegLira, and it is well tolerated overall.Abbreviations: A1C = hemoglobin A1C; AE = adverse event; CI = confidence interval; Degludec = insulin degludec; EOT = end of trial; ETD = estimated treatment difference; FPG = fasting plasma glucose; GLP-1RA = glucagon-like peptide 1 receptor agonist; IDegLira = insulin degludec/liraglutide; IGlar U100 = insulin glargine 100 U/mL; SU = sulfonylurea; T2D = type 2 diabetes  相似文献   

19.
《Endocrine practice》2015,21(12):1333-1343
Objective: To evaluate the impact of different subcutaneous basal insulin regimens on glycemic variability (GV) and hospital complications in non-intensive care unit (ICU) patients with type 2 diabetes (T2D).Methods: This study is a post hoc analysis of 279 general medicine and surgery patients treated with either a “Basal Bolus” insulin regimen using glargine once daily and glulisine before meals or a “Basal Plus” regimen using glargine once daily plus correction doses of glulisine before meals for glucose >140 mg/dL. GV was calculated as mean delta (Δ) daily glucose, mean SD, and mean amplitude of glycemic excursions (MAGE).Results: Treatment with Basal Bolus and Basal Plus regimens resulted in similar mean daily glucose, hypoglycemia, length of stay (LOS), and hospital complications (all P>.05). There were no differences in GV between treatment groups by Δ change (72.5 ± 36 vs. 69.3 ± 34 mg/dL), SD (38.5 ± 18 vs. 37.1 ± 16 mg/dL) and MAGE (67.5 ± 34 vs. 66.1 ± 39 mg/dL) (all P>.05). Surgery patients treated with Basal Bolus had higher GV compared to those treated with Basal Plus (Δ daily glucose and SD: P = .02, MAGE: P = .009), but no difference in GV was found between treatment groups for the general medicine patients (P>.05). Patients with hypoglycemia events had higher GV compared to subjects without hypoglycemia (P<.05), but no association was found between GV and hospital complications (P>.05).Conclusion: Treating hospitalized, non-ICU, diabetic patients with Basal Plus insulin regimen resulted in similar glucose control and GV compared to the standard Basal Bolus insulin regimen. Higher GV was not associated with hospital complications.Abbreviations:BG = blood glucoseCV= coefficient of variationGV= glycemic variabilityICU = intensive care unitLOS = length of stayMAGE = mean amplitude of glycemic excursionsSSI = sliding scale insulinT2D = type 2 diabetesTDD =total daily dose  相似文献   

20.
《Endocrine practice》2019,25(4):306-314
Objective: Characterize the effectiveness of insulin glargine alone, exenatide alone, or combined in subjects taking stable doses of metformin and evaluate their impact on hemoglobin A1C, hypoglycemia, weight, and glucose variability.Methods: Open-label, randomized, parallel-arm study of adults with type 2 diabetes naïve to both insulin and glucagon-like peptide 1 (GLP-1) agonist who were not at A1C goal despite treatment with metformin. This prospective interventional study employed blinded continuous glucose monitoring ambulatory glucose profile (AGP) reports over 32 weeks. Subjects were randomized to treatment with glargine (Iglar), exenatide (GLP-1), or combination of glargine and exenatide (Iglar + GLP-1). At midpoint, those not at A1C target had the second medication added; those on Iglar + GLP-1 continued therapy optimization.Results: Decreases in A1C were: 7.6 to 6.2% for Iglar + GLP-1, 7.5 to 6.6% for Iglar, and 7.5 to 6.4% for GLP-1. Iglar + GLP-1 achieved A1C targets faster (14 to 16 weeks) but had more hypoglycemia. Hypoglycemia rates increased slightly for all arms. Weight loss was achieved in all regimens including GLP-1. Glucose variability was not reduced to the same extent in the Iglar arm as the GLP-1 arm.Conclusion: Addition of Iglar and/or GLP-1 to metformin for patients not at treatment goal was safe and effective. The order of medication addition needs to consider individualized AGP patterns and goals. Iglar + GLP-1 resulted in rapid A1C lowering, whereas GLP-1 was noted to have less hypoglycemia. Weight loss was most pronounced in GLP-1 monotherapy, suggesting that GLP-1 may mitigate the weight gain of Iglar. Any treatment with GLP-1 showed significant decreases in glucose variability.Abbreviations: A1C = hemoglobin A1c; AGP = ambulatory glucose profile; CGM = continuous glucose monitoring; GLM = general linear model; GLP-1 = glucagon-like peptide 1 (exenatide); Iglar = insulin glargine; SGLT2 = sodium-glucose cotransporter 2; SMBG = self-monitoring blood glucose; SU = sulfonylurea; T2D = type 2 diabetes mellitus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号