首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative Genomic Hybridization (CGH) is a molecular cytogenetic method for detecting chromosomal imbalances by comparing the copy number of DNA sequences in cells of tested tissue and the reference specimen. CGH is based on two-color fluorescence suppressive in situ hybridization of genomic test and reference DNAs, each labeled with a different fluorochrome, to metaphase chromosomes of a healthy individual. First described by Kallioniemi et al. in 1992, the CGH assay has been widely used for identification and characterization of both numerical and unbalanced structural chromosome abnormalities in cells of different tissues at various pathological conditions in humans, especially in tumor diseases. We discuss the specific features and quality control of comparative genomic hybridization, its advantages and limitations in detection of genomic imbalance and the prospects for development of this technology.  相似文献   

2.
Cheng C  Kimmel R  Neiman P  Zhao LP 《Genomics》2003,82(2):122-129
cDNA microarray technology has been applied to the detection of DNA copy-number changes in malignant tumors. Test and control genomic DNA samples are differentially labeled and cohybridized to a spotted cDNA microarray. The ratio of test to control fluorescence intensities for each spot reflects relative gene copy number. The low signal-to-noise ratios of this assay and the variable levels of gene amplification and deletion among tumors hamper the detection of deviations from the diploid complement. We describe a regression-based statistical method to test for altered copy number on each gene and apply the technique to copy-number profiles in 10 thyroid tumors. We show that a novel transformation of fluorescence ratios into array rank order efficiently normalizes the heterogeneity among copy-number profiles and improves the reproducibility of the results. Array rank order regression analysis enhances the detection of consistent changes in gene copy number in solid tumors by cDNA microarray-based comparative genome hybridization.  相似文献   

3.
刘永章  帅茨霞  董杰影 《遗传》2005,27(2):185-189
为了探讨用荧光原位杂交技术(fluorescence in situ hybridization, FISH)检测卵巢癌细胞中性染色体拷贝数目异常的实验方法及其应用价值,收集18例新鲜卵巢癌组织标本,以Biotin标记的X染色体α-卫星DNA(pBamX7)探针与经处理的标本进行卵巢癌细胞核的原位杂交,分别用Avidin-FITC和Anti-avidin进行信号的检测与放大,PI复染。于Olympus AX-70型荧光显微镜下,通过WIB滤光镜观察杂交信号及其细胞核背景,并统计卵巢癌细胞核中的杂交信号颗粒数量。在显微镜下可见以Biotin标记的pBamX7探针显示绿色杂交信号,细胞核背景经PI复染显示桔红色;发现11/18(61%)卵巢癌标本中X染色体拷贝数增加,其余7例(39%)无拷贝数增加。X染色体拷贝数目增多在卵巢癌中有一定比例的发生频率,其在促进卵巢癌发病及其发展过程中起到某种作用,其意义值得进一步研究。  相似文献   

4.
应用双色荧光原位杂交技术检测克氏综合征   总被引:2,自引:1,他引:2  
刘永章  吴雪昌  金龙金  董杰影 《遗传》2003,25(3):271-275
探讨用双色荧光原位杂交技术(dual-color fluorescence in situ hybridization,D-FISH)检测性染色体数目异常克氏综合征的应用价值,建立常规分裂期染色体和间期细胞FISH技术的实验方法。以Biotin标记的X染色体α-卫星DNA(pBamX7)探针和以Digoxigenin标记的Y染色体长臂末端重复序列(pY3.4)探针对19例克氏综合征标本同时进行外周血染色体及其间期细胞核的原位杂交,分别用Avidin-FITC和Rhodamine-FITC及其Anti-avidin进行信号的检测与放大,DAPI复染。于Olympus AX-70型荧光显微镜下,分别通过WIB、WIG及其WU滤光镜观察杂交信号及其染色体或间期核背景,并统计外周血中期染色体及其间期细胞核的杂交信号颗粒数量。在显微镜下可见以Biotin标记的pBamX7探针显示2个绿色杂交信号,以Digoxigenin标记的pY3.4探针显示1个红色杂交信号,染色体或间期核背景经DAPI复染显示蓝色;18例出现XXY杂交信号的细胞,染色体及其间期细胞核杂交平均出现率分别为95.89%和95%,明显大于正常对照标准值2.75%,证实核型为47,XXY,与染色体检测的结果一致;其余1例染色体核型检测为嵌合体,XXY杂交信号细胞出现率为92%,同时检出6.7%的XY杂交信号细胞(>正常对照标准值4.17%)。用FISH 技术检测性染色体数目异常克氏综合征具有快速、敏感度高、信号强、背景低、多色等优点,故FISH 技术在产前诊断检测领域中显示其重要的应用价值和发展前景。 Abstract:The objective of the work is to study the technique of dual-color fluorescence in situ hybridization(D-FISH) and its application value in the diagnosis of sex chromosomal count abnormality Klinefelter syndrome and establish an experimental approach to metaphase chromosome and interphase nucleus FISH technique.Biotin labeled alpha satellite X-chromosome DNA(pBamX7) probe and Digoxigenin labeled Y-chromosome long arm terminal repetitive sequence (pY3.4) probe were hybridized with pre-treated slides of peripheral blood chromosome and interphase nucleus in 19 cases of Klinefelter syndrome specimens.After being washed,the slides were treated with Avidin-FITC,Rhodamine-FITC and Anti-avidin,amplified with an additional layer and counter-stained with DAPI in an antifade solution.The hybridization signals,chromosomal or interphase nucleus settings were observed respectively with WIB,WIG and WU filters under fluorescence microscope Olympus AX-70,and the number of metaphase chromosome and interphase nucleus in the peripheral blood was counted.It was observed under the microscope that the Biotin labeled pBamX7 probe showed 2 green hybridization signals and that the Digoxigenin labeled pY3.4 probe showed 1 red hybridization signal.Chromosome or interphase nucleus counter-stained with DAPI showed blue.The average signal rate of chromosome and interphase nucleus hybridization was 95.89% and 95% respectively,significantly higher than the normal control (2.75%).Karyotype 47,XXY was confirmed,which agrees with the chromosomal findings.One case showed mosaic nuclei.XXY chromosome hybridization signal rate was 92% and XY hybridization signal rate was 6.7%,higher than the normal control rate of 4.17%.FISH is a valuable technique in diagnosing sex chromosomal count abnormality Klinefelter syndrome with the merits of fast speed,high sensitivity,strong signal,low background and multiple color.Therefore,FISH technique can find wide application and potential in prenatal diagnosis.  相似文献   

5.
A fluorescent resonance energy transfer (FRET)-based hybridization assay for detecting multiplex ligation-dependent probe amplification (MLPA) products has been developed, extending the diagnostic power of the technique and demonstrating the possibility of combining MLPA with microarrays for the detection of multiple mutations. FRET is one of the most commonly used detection techniques for hybridization assays. To investigate the applicability of FRET based detection of MLPA products, a sandwich assay was designed to detect gene copy number by exploiting an immobilized probe labeled with an acceptor dye, Alexa Fluor 555, which hybridises to specific PCR amplicons, followed by hybridization of a second probe labeled with the donor dye, Alexa Fluor 488. Following excitation of the Alexa Fluor 488, a FRET signal was produced only if a DNA sequence specific to the BRCA1 exon 13 was present in the test sample. We have verified this assay on a DNA sample of a patient carrying a heterozygous BRCA1 exon 13 deletion using male genomic DNA as control. Here we demonstrate that the DNA sample containing the heterozygous deletion generated a considerably reduced FRET signal as compared to the control male human DNA. Our results show that the FRET design presented in this study can differentiate between reduced copy numbers any genomic DNA sequence after MLPA analysis, and the reported format is applicable to multiplex detection of MLPA products, using microarrays, or optical biosensor arrays, and future work will focus on the demonstration of this.  相似文献   

6.
背景:染色体相互易位在人群中比较常见,下一代常常产生相同或不同的易位,易导致容易流产,而植入前诊断方法之一的CGH难以检测到相互易位,因此原位杂交(FISH)依然是解决诊断相互易位的有力手段。目的:通过设计个体化的FISH探针,制备探针,并在卵裂球单细胞水平进一步验证探针的准确性,为筛选正常核型的囊胚进行植入奠定技术基础,为个体化的FISH探针植入前诊断提供应用研究基础。方法:通过设计1 q和6p平衡易位探针,进行探针标记,再采用患者和正常人核型验证探针质量,通过荧光原位杂交技术进一步检测正常人受精后的卵裂球中1q 和6p平衡易位对易位染色体状态。结果:3个卵接球裂均呈现单个完整细胞核,荧光原位杂交中各细胞核均有清晰明亮的杂交信号。信号数分别为2。均为正常胚胎,可以考虑进一步对该易位患者进行卵裂球进行诊断,上述研究对个体化的易位探针的应用研究提供了研究基础。  相似文献   

7.
Classical banding methods provide basic information about the identities and structures of chromosomes on the basis of their unique banding patterns. Spectral karyotyping (SKY), and the related multiplex fluorescence in situ hybridization (M-FISH), are chromosome-specific multicolor FISH techniques that augment cytogenetic evaluations of malignant disease by providing additional information and improved characterization of aberrant chromosomes that contain DNA sequences not identifiable using conventional banding methods. SKY is based on cohybridization of combinatorially labeled chromosome-painting probes with unique fluorochrome signatures onto human or mouse metaphase chromosome preparations. Image acquisition and analysis use a specialized imaging system, combining Sagnac interferometer and CCD camera images to reconstruct spectral information at each pixel. Here we present a protocol for SKY analysis using commercially available SkyPaint probes, including procedures for metaphase chromosome preparation, slide pretreatment and probe hybridization and detection. SKY analysis requires approximately 6 d.  相似文献   

8.
DNA was assayed in a homogeneous format using DNA probes containing hybridization-sensitive labels. The DNA probes were prepared from complementary DNA strands in which one strand was covalently labeled on the 5'-terminus with fluorescein and the complementary strand was covalently labeled on the 3'-terminus with a quencher of fluorescein emission, either pyrenebutyrate or sulforhodamine 101. Probes prepared in this manner were able to detect unlabeled target DNA by competitive hybridization producing fluorescence signals which increased with increasing target DNA concentration. A single pair of complementary probes detected target DNA at a concentration of approximately 0.1 nM in 10 min or about 10 pM in 20-30 min. Detection of a 4 pM concentration of target DNA was demonstrated in 6 h using multiple probe pairs. The major limiting factors were background fluorescence and hybridization rates. Continuous monitoring of fluorescence during competitive hybridization allowed correction for variable sample backgrounds at probe concentrations down to 20 pM; however, the time required for complete hybridization increased to greater than 1 h at probe concentrations below 0.1 nM. A promising application for this technology is the rapid detection of amplified polynucleotides. Detection of 96,000 target DNA molecules in a 50-microliters sample was demonstrated following in vitro amplification using the polymerase chain reaction technique.  相似文献   

9.
Fluorescein-labeled oligonucleotide probes can be used to continuously monitor the polymerase chain reaction. Depending on the sequence, the fluorescence intensity of the probe is either increased or decreased by hybridization. The greatest effect is probe quenching by hybridization to amplicons containing deoxyguanosine nucleotides (Gs), giving a sequence-specific decrease in fluorescence as product accumulates. Quenching of the probes by Gs is position dependent. A 25% decrease in fluorescence of 5'-labeled probes was observed with a G at the first position of the 3'-dangling end. Additional Gs can increase quenching to about 40%. This change in fluorescence with hybridization allows real-time quantification and mutation detection with a simple single labeled probe. Quantification of the initial template copy number is possible by monitoring fluorescence at each cycle at a constant temperature. Mutation detection by Tm estimates from melting curve analysis for factor V Leiden, hemoglobin C, hemoglobin S, the thermolabile mutation of methylenetetrahydrofolate reductase, and the cystic fibrosis-associated deletion F508del is demonstrated. By using the inherent quenching of deoxyguanosine nucleotides in the amplicon, complicated probe designs involving internal quenching can be avoided.  相似文献   

10.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

11.
12.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

13.
A colored banding pattern for human chromosomes is described that distinguishes each chromosome in a single fluorescence in situ hybridization with a set of subregional DNA probes. Alu/polymerase chain reaction products of various human/rodent somatic cell hybrids (fragment hybrids) were pooled into two probe sets that were labeled differentially and detected by red and green fluorescence. Chromosome regions hybridized by DNA present in both pools appeared yellow. The result was a multi-color set of 110 distinct signals per haploid chromosome set for the human karyotype. Each individual chromosome showed a unique sequence of signals, a result termed the “chromosome bar code”. The reproducibility of the hybridization pattern in various labeling and hybridization experiments was analyzed by computer densitometry. We have applied the chromosome bar code both in diagnostic cytogenetics and in genome studies. The approach allows the rapid identification of chromosomes and chromosome rearrangements. Although not yet showing the resolution of classical banding patterns, the present experiments demonstrate various applications in which the present multi-color bar code can significantly add to the spectrum of cytogenetic techniques. Received: 18 December 1996 / Accepted: 10 February 1997  相似文献   

14.
Cytochemical hybridization with fluorochrome-labeled RNA. II. Applications   总被引:6,自引:0,他引:6  
The cytochemical detection of specific DNA sequences by hybridization with fluorochrome-labeled RNA and detection of the hybrids by fluorescence microscopy is described. RNAs complementary to the DNA of the kinetoplasts of Crithidia luciliae (an insect trypanosome) or to adenovirus-5 (Ad-5) DNA were labeled with the hydrazine derivative of tetramethylrhodamine isothiocyanate (TRITC). The specificity of the reactions between the complementary RNAs labeled both with 3H and tetramethylrhodamine was studied by cross-hybridization experiments using a model system in which the DNAs were bound to Sepharose beads. The extent of the reaction was measured by scintillation counting of the bead suspensions and quantitative fluorescence microscopy of individual Sepharose beads. The ability of the rhodamine-labeled cRNAs to hybridize and the absence of interference of the fluorochrome label with the specificity of the hybridization reaction was thus demonstrated. After cytochemical hybridization on microscopic preparations of C. luciliae cells the rhodamine-labeled kinetoplast cRNA stains only the kinetoplasts. No fluorescence was observed in the nuclei. After cytochemical hybridization of rhodamine-labeled Ad-5 cRNA with virus infected KB cells a distinct staining pattern in the nuclei was observed. No fluorescence was seen in uninfected cells, or after hybridization with heterologous rhodamine-labeled RNA. The possibilities and limitations of cytochemical hybridization with rhodamine-labeled RNA are discussed.  相似文献   

15.
We have developed a simple quantitative method for specific nucleic acid sequences without using calibration curves. This method is based on the combined use of competitive polymerase chain reaction (PCR) and fluorescence quenching. We amplified a gene of interest (target) from DNA samples and an internal standard (competitor) with a sequence-specific fluorescent probe using PCR and measured the fluorescence intensities before and after PCR. The fluorescence of the probe is quenched on hybridization with the target by guanine bases, whereas the fluorescence is not quenched on hybridization with the competitor. Therefore, quench rate (i.e., fluorescence intensity after PCR divided by fluorescence intensity before PCR) is always proportional to the ratio of the target to the competitor. Consequently, we can calculate the ratio from quench rate without using a calibration curve and then calculate the initial copy number of the target from the ratio and the initial copy number of the competitor. We successfully quantified the copy number of a recombinant DNA of genetically modified (GM) soybean and estimated the GM soybean contents. This method will be particularly useful for rapid field tests of the specific gene contamination in samples.  相似文献   

16.
We have constructed light-up probes for nucleic acid detection. The light-up probe is a peptide nucleic acid (PNA) oligonucleotide to which the asymmetric cyanine dye thiazole orange (TO) is tethered. It combines the excellent hybridization properties of PNA and the large fluorescence enhancement of TO upon binding to DNA. When the PNA hybridizes to target DNA, the dye binds and becomes fluorescent. Free probes have low fluorescence, which may increase almost 50-fold upon hybridization to complementary nucleic acid. This makes the light-up probes particularly suitable for homogeneous hybridization assays, where separation of the bound and free probe is not necessary. We find that the fluorescence enhancement upon hybridization varies among different probes, which is mainly due to variations in free probe fluorescence. For eight probes studied the fluorescence quantum yield at 25 degrees C in the unbound state ranged from 0.0015 to 0.08 and seemed to depend mainly on the PNA sequence. The binding of the light-up probes to target DNA is highly sequence specific and a single mismatch in a 10-mer target sequence was readily identified.  相似文献   

17.
BACKGROUND: Various protocols for estimation of telomere length in individual cells by flow cytometry using fluorescence in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes (Flow-FISH) have been described. Combined analysis of telomere length and cell phenotype, however, remains difficult because few fluorochromes with suitable emission spectra tolerate the harsh conditions needed for DNA denaturation during hybridization of the telomere-specific PNA probe. We overcame these problems and developed a method for measuring telomere length in cell subsets characterized by the expression of two surface antigens. METHODS: Alexa Fluor 488 and Alexa Fluor 546 were used for cell surface staining. Antigen-antibody complexes were covalently cross-linked onto the cell membrane before Flow-FISH. Cells were hybridized with a PNA probe conjugated to cyanine 5 (Cy5). Hoechst 33342 (HO342) was added for determination of cellular DNA content. For assay standardization, we added an aliquot of a single batch of 1,301 cells to each sample as an internal control before hybridization with the PNA probe. Samples were prepared in duplicate and analyzed on a standard three-laser BD LSR flow cytometer. For assay validation, the same samples were analyzed in parallel to correlate the percentage of telomere length of the sample versus 1,301 control cells to the mean size of terminal restriction fragments (TRFs) of DNA as determined by Southern gel analysis. RESULTS: The method permitted clear identification of lymphocyte subsets in samples hybridized for Flow-FISH, with subset frequencies comparable to those of untreated samples. At a concentration of 10 nM, the Cy5-labeled telomere-specific PNA probe produced a bright fluorescence signal well separated from background. Addition of HO342 in low concentration did not interfere with Cy5 telomere fluorescence, produced adequate DNA histograms, and permitted clear identification of cell phenotype. The probe concentration of 10 nM also proved optimal for inclusion of 1,301 control cells for assay standardization. Telomere length estimations by the current method correlated highly with TRF calculations by Southern gel hybridization (r(2)= 0.9, P = 0.0003). Application of our protocol to the analysis of human CD8CD28 lymphocyte subsets showed that CD8(+bright)CD28(-) lymphocytes generally exhibit shorter telomeres than CD8(+bright)CD28(+) cells. These data concurred with previous results of telomere shortening in CD8(+)CD28(-) T cells that were obtained by using different techniques. CONCLUSIONS: The multiparameter Flow-FISH protocol permitted rapid determination of differences in telomere length in subpopulations characterized by two surface markers without prior cell separation.  相似文献   

18.
We have designed a doubly thiazole orange labeled nucleoside showing high fluorescence intensity for a hybrid with the target DNA and effective quenching for a single-stranded state. Knowing how much the fluorescence emission and quenching of this probe depend on the probe sequence and why there is such a sequence dependence is important for effective probe design, we synthesized more than 30 probe sequences and measured their fluorescence intensities. When the probe hybridized with the target DNA strands, there was strong emission, whereas the emission intensity was much weaker before hybridization; however, self-dimerization of probes suppressed fluorescence quenching. In particular, the G/C base pairs neighboring the labeled nucleotide in a self-dimeric structure resulted in a low quenching ability for the probe before hybridization. On the other hand, mismatched base pair formation around the labeled site decreased the fluorescence intensity because the neighboring sequence is the binding site of the tethered thiazole orange dyes. The hybridization enhanced the fluorescence of the probe even when the labeled nucleotide was located at the end of the probe strand; however, the partial lack of duplex structure resulted in a decrease in the fluorescence intensity of the hybrid.  相似文献   

19.
Oligonucleotide probes labeled with fluorescent dyes are used in a variety of in situ applications to detect specific DNA or RNA molecules. It has been described that probe fluorescence might be quenched upon hybridization in a sequence specific way. Here, a set of 17 oligonuleotides labeled with 6-carboxyfluorescein was used to examine the relevance of nucleotide specific quenching for fluorescence in situ hybridization (FISH) to whole fixed bacterial cells. Probes quenched upon hybridization to a guanine-rich region of purified RNA in solution were not quenched upon FISH. Among other factors the high protein concentration within cells may prevent quenching of probe fluorescence in situ.  相似文献   

20.
Comparative genomic in situ hybridization (CGH) provides a new possibility for searching genomes for imbalanced genetic material. Labeled genomic test DNA, prepared from clinical or tumor specimens, is mixed with differently labeled control DNA prepared from cells with normal chromosome complements. The mixed probe is used for chromosomal in situ suppression (CISS) hybridization to normal metaphase spreads (CGH-metaphase spreads). Hybridized test and control DNA sequences are detected via different fluorochromes, e.g., fluorescein isothiocyanate (FITC) and tetraethylrhodamine isothiocyanate (TRITC). The ratios of FITC/TRITC fluorescence intensities for each chromosome or chromosome segment should then reflect its relative copy number in the test genome compared with the control genome, e.g., 0.5 for monosomies, 1 for disomies, 1.5 for trisomies, etc. Initially, model experiments were designed to test the accuracy of fluorescence ratio measurements on single chromosomes. DNAs from up to five human chromosome-specific plasmid libraries were labeled with biotin and digoxigenin in different hapten proportions. Probe mixtures were used for CISS hybridization to normal human metaphase spreads and detected with FITC and TRITC. An epifluorescence microscope equipped with a cooled charge coupled device (CCD) camera was used for image acquisition. Procedures for fluorescence ratio measurements were developed on the basis of commercial image analysis software. For hapten ratios 4/1, 1/1 and 1/4, fluorescence ratio values measured for individual chromosomes could be used as a single reliable parameter for chromosome identification. Our findings indicate (1) a tight correlation of fluorescence ratio values with hapten ratios, and (2) the potential of fluorescence ratio measurements for multiple color chromosome painting. Subsequently, genomic test DNAs, prepared from a patient with Down syndrome, from blood of a patient with Tcell prolymphocytic leukemia, and from cultured cells of a renal papillary carcinoma cell line, were applied in CGH experiments. As expected, significant differences in the fluorescence ratios could be measured for chromosome types present in different copy numbers in these test genomes, including a trisomy of chromosome 21, the smallest autosome of the human complement. In addition, chromosome material involved in partial gains and losses of the different tumors could be mapped to their normal chromosome counterparts in CGH-metaphase spreads. An alternative and simpler evaluation procedure based on visual inspection of CCD images of CGH-metaphase spreads also yielded consistent results from several independent observers. Pitfalls, methodological improvements, and potential applications of CGH analyses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号