首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frataxin is a mitochondrial protein involved in iron metabolism. Defective expression of frataxin causes Friedreich ataxia (FA), an inherited degenerative syndrome characterized by ataxia, cardiomyopathy, and high incidence of diabetes. Here we report that frataxin-deficient cells are more prone to undergo stress-induced mitochondrial damage and apoptosis, while the overexpression of frataxin confers protection to a variety of cell types. Moreover, we reveal the existence of an extramitochondrial pool of frataxin, which can efficiently prevent mitochondrial damage and apoptosis in different cellular systems. Remarkably, extramitochondrial frataxin can fully replace mitochondrial frataxin in promoting survival of FA cells.  相似文献   

2.
Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/− mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading.  相似文献   

3.
While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart.  相似文献   

4.
Two different methods were used to create a situation of iron (Fe) overload in rats. One group of rats received Fe dextran, and another group of rats received a carbonyl Fe-enriched diet. The ferritins present in the liver cytosol of these rats were isolated and compared. From each group, two cytosolic products were isolated with the use of ultracentrifugation: a cytosolic ferritin fraction (CF) and a (slower sedimenting) light ferritin fraction (CLF). There were no differences with respect to the protein coat (subunit composition and amino acid analysis). Analysis of the Fe core revealed that the two CF fractions were similar, whereas the two CLF fractions differed with respect to their Fe content and to the packing of their cores. The carbonyl CLF product contained less Fe atoms/molecule, which, moreover, seemed to be packed in a less compact way.  相似文献   

5.
6.

Background

Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis.

Methods

Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC.

Results

Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis.

Conclusion

Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells.  相似文献   

7.
Mitochondrial aconitase has been shown to be inactivated under the effects of many compounds and critical states. Fluoroacetate (FA) is the best-known aconitase-inhibiting toxic agent. The biochemistry of the toxic action of FA has been rather well studied; however, no effective therapy has been developed over the past six decades. To search for new approaches to the development of possible antidotes, experiments were carried out in vitro with rat liver mitochondria, Ehrlich ascite tumor (EAT) cells, and cardiomyocytes exposed to FA or fluorocitrate (FC). FA produced its effects at much higher concentrations as compared with FC; in experiments with mitochondria these effects depended on respiratory substrates: with pyruvate, FA induced a slow oxidation and/or a leak of pyridine nucleotides and inhibition of respiration. Oxidation of pyridine nucleotides (PN) was prevented by the incubation of mitochondria with cyclosporin A. Studies of the PN level and dynamics of Ca2+ in EAT cells during activation by ATP also revealed the PN leak from mitochondria, which led to a shift in the balance of mitochondrial and cytosolic NAD(P)H under action of FA. Moreover, an increase of cytosolic Ca2+ was revealed in the cells exposed to FA, which could be explained by the activation of plasma membrane calcium channels. This mechanism could affect the amplitude and rate of calcium waves in cardiomyocytes under the effects of FA. We emphasize the reciprocal relationship between intracellular PN dynamics and calcium balance and discuss possible pathways of metabolic modulation in the context of development of effective therapy of poisoning with FA and other aconitase inhibitors.  相似文献   

8.
Ferritins: a family of molecules for iron storage, antioxidation and more   总被引:1,自引:0,他引:1  
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.  相似文献   

9.
It has been a longstanding problem to identify specific and efficient pharmacological modulators of autophagy. Recently, we found that depletion of acetyl-coenzyme A (AcCoA) induced autophagic flux, while manipulations designed to increase cytosolic AcCoA efficiently inhibited autophagy. Thus, the cell permeant ester dimethyl α-ketoglutarate (DMKG) increased the cytosolic concentration of α-ketoglutarate, which was converted into AcCoA through a pathway relying on either of the 2 isocitrate dehydrogenase isoforms (IDH1 or IDH2), as well as on ACLY (ATP citrate lyase). DMKG inhibited autophagy in an IDH1-, IDH2- and ACLY-dependent fashion in vitro, in cultured human cells. Moreover, DMKG efficiently prevented autophagy induced by starvation in vivo, in mice. Autophagy plays a maladaptive role in the dilated cardiomyopathy induced by pressure overload, meaning that genetic inhibition of autophagy by heterozygous knockout of Becn1 suppresses the pathological remodeling of heart muscle responding to hemodynamic stress. Repeated administration of DMKG prevents autophagy in heart muscle responding to thoracic aortic constriction (TAC) and simultaneously abolishes all pathological and functional correlates of dilated cardiomyopathy: hypertrophy of cardiomyocytes, fibrosis, dilation of the left ventricle, and reduced contractile performance. These findings indicate that DMKG may be used for therapeutic autophagy inhibition.  相似文献   

10.
11.
Insulin deficiency downregulates HSP60 and IGF-I receptor signaling and disrupts intracellular signaling homeostasis in diabetic cardiac muscle. Our previous studies had shown that IGF-I receptor signaling can be modulated by the abundance of HSP60. Since HSP60 localizes to the cytoplasmic compartment and mitochondria, this study was carried out to determine the distribution of cytosolic and mitochondria HSP60 in diabetic myocardium and to explore whether cytosolic HSP60 can modulate IGF-I receptor signaling in cardiac muscle cells. In streptozotocin-induced diabetes, both the cytosolic and mitochondrial fractions of HSP60 were decreased in the myocardium. Incubating primary cardiomyocytes with insulin leads to increased abundance of HSP60 in the cytosolic and mitochondria compartments. To determine whether cytosolic HSP60 can modulate IGF-I receptor signaling, we used rhodamine 6G to deplete functional mitochondria in cardiomyocytes. In the mitochondria-depleted cells, overexpression of HSP60 with adenoviral vector increased the abundance of IGF-I receptor, enhanced IGF-I-activated receptor phosphorylation, and augmented IGF-I activation of Akt and ERK. Thus overexpressing HSP60 in the cytosolic compartment enhanced IGF-I receptor signaling through upregulation of IGF-I receptor protein. However, IGF-I receptor signaling was significantly reduced in the mitochondria-depleted cells, which suggested that maintaining normal IGF-I receptor signaling in cardiomyocytes required functioning mitochondria. The effect of cytosolic HSP60 involved suppression of ubiquitin conjugation to IGF-I receptor in cardiomyocytes. These data suggest two different mechanisms that can regulate IGF-I signaling, one via cytosolic HSP60 suppression of IGF-I receptor ubiquitination and the other via mitochondria modulation. These findings provide new insight into the regulation of IGF-I signaling in diabetic cardiomyopathy.  相似文献   

12.
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein–FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a “closed” FakB1 state to an “open” state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.  相似文献   

13.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

14.
Mitochondrial aconitase has been shown to be inactivated by a spectrum of substances or critical states. Fluoroacetate (FA) is the most known toxic agent inhibiting aconitase. The biochemistry of toxic action of FA is rather well understood, though no effective therapy has been proposed for the past six decades. In order to reveal novel approaches for possible antidotes to be developed, experiments were performed with rat liver mitochondria, Ehrlich ascite tumor cells and cardiomyocytes, exposed to FA or fluorocitrate in vitro. The effect of FA developed at much higher concentrations in comparison with fluorocitrate and was dependent upon respiratory substrates in experiments with mitochondria: with pyruvate, FA induced a slow oxidation and/or leak of pyridine nucleotides and inhibition of respiration. Oxidation of pyridine nucleotides was prevented by incubation of mitochondria with cyclosporin A. Studies of the pyridine nucleotides level and calcium response generated in Ehrlich ascite tumor cells under activation with ATP also revealed a loss of pyridine nucleotides from mitochondria resulting in a shift in the balance of mitochondrial and cytosolic NAD(P)H under exposure to FA. An increase of cytosolic [Ca2+] was observed in the cell lines exposed to FA and is explained by activation of plasma membrane calcium channels; this mechanism, could have an impact on amplitude and rate of Ca2+ waves in cardiomyocytes. Highlighting the reciprocal relationship between intracellular pyridine nucleotides and calcium balance, we discuss metabolic pathway modulation in the context of probable development of an effective therapy for FA poisoning and other inhibitors of aconitase.  相似文献   

15.
The selection of appropriate seeds is essential for the success of phytoremediation/restoration projects. In this research, the growth and elements uptake by the offspring of mesquite plants (Prosopis sp.) grown in a copper mine tailing (site seeds, SS) and plants derived from vendor seeds (VS) was investigated. Plants were grown in a modified Hoagland solution containing a mixture of Cu, Mo, Zn, As(III) and Cr(VI) at 0, 1, 5 and 10 mg L−1 each. After one week, plants were harvested and the concentration of elements was determined by using ICP-OES. At 1 mg L−1, plants originated from SS grew faster and longer than control plants (0 mg L−1); whereas plants grown from VS had opposite response. At 5 mg L−1, 50% of the plants grown from VS did not survive, while plants grown from SS had no toxicity effects on growth. Finally, plants grown from VS did not survive at 10 mg L−1 treatment, whilst 50% of the plants grown from SS survived. The ICP-OES data demonstrated that at 1 mg L−1 the concentration of all elements in SS plants was significantly higher compared to control plants and VS plants. While at 5 mg L−1, the shoots of SS plants had significantly more Cu, Mo, As, and Cr. The results suggest that SS could be a better source of plants intended to be used for phytoremediation of soil impacted with Cu, Mo, Zn, As and Cr.  相似文献   

16.
A significant percentage of individuals diagnosed with mild traumatic brain injury (mTBI) experience persistent post-concussive symptoms (PPCS). Little is known about the pathology of these symptoms and there is often no radiological evidence based on conventional clinical imaging. We aimed to utilize methods to evaluate microstructural tissue changes and to determine whether or not a link with PPCS was present. A novel analysis method was developed to identify abnormalities in high-resolution diffusion tensor imaging (DTI) when the location of brain injury is heterogeneous across subjects. A normative atlas with 145 brain regions of interest (ROI) was built from 47 normal controls. Comparing each subject’s diffusion measures to the atlas generated subject-specific profiles of injury. Abnormal ROIs were defined by absolute z-score values above a given threshold. The method was applied to 11 PPCS patients following mTBI and 11 matched controls. Z-score information for each individual was summarized with two location-independent measures: “load” (number of abnormal regions) and “severity” (largest absolute z-score). Group differences were then computed using Wilcoxon rank sum tests. Results showed statistically significantly higher load (p = 0.018) and severity (p = 0.006) for fractional anisotropy (FA) in patients compared with controls. Subject-specific profiles of injury evinced abnormally high FA regions in gray matter (30 occurrences over 11 patients), and abnormally low FA in white matter (3 occurrences over 11 subjects). Subject-specific profiles provide important information regarding the pathology associated with PPCS. Increased gray matter (GM) anisotropy is a novel in-vivo finding, which is consistent with an animal model of brain trauma that associates increased FA in GM with pathologies such as gliosis. In addition, the individualized analysis shows promise for enhancing the clinical care of PPCS patients as it could play a role in the diagnosis of brain injury not revealed using conventional imaging.  相似文献   

17.
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia–reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

18.
Mitochondrial ferritin (MtF) is a newly identified ferritin encoded by an intronless gene on chromosome 5q23.1. The mature recombinant MtF has a ferroxidase center and binds iron in vitro similarly to H-ferritin. To explore the structural and functional aspects of MtF, we expressed the following forms in HeLa cells: the MtF precursor (approximately 28 kDa), a mutant MtF precursor with a mutated ferroxidase center, a truncated MtF lacking the approximately 6-kDa mitochondrial leader sequence, and a chimeric H-ferritin with this leader sequence. The experiments show that all constructs with the leader sequence were processed into approximately 22-kDa subunits that assembled into multimeric shells electrophoretically distinct from the cytosolic ferritins. Mature MtF was found in the matrix of mitochondria, where it is a homopolymer. The wild type MtF and the mitochondrially targeted H-ferritin both incorporated the (55)Fe label in vivo. The mutant MtF with an inactivated ferroxidase center did not take up iron, nor did the truncated MtF expressed transiently in cytoplasm. Increased levels of MtF both in transient and in stable transfectants resulted in a greater retention of iron as MtF in mitochondria, a decrease in the levels of cytosolic ferritins, and up-regulation of transferrin receptor. Neither effect occurred with the mutant MtF with the inactivated ferroxidase center. Our results indicate that exogenous iron is as available to mitochondrial ferritin as it is to cytosolic ferritins and that the level of MtF expression may have profound consequences for cellular iron homeostasis.  相似文献   

19.
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.  相似文献   

20.
The metabolism of hepcidin is profoundly modified in chronic kidney disease (CKD). We investigated its relation to iron disorders, inflammation and hemoglobin (Hb) level in 199 non-dialyzed, non-transplanted patients with CKD stages 1–5. All had their glomerular filtration rate measured by 51Cr-EDTA renal clearance (mGFR), as well as measurements of iron markers including hepcidin and of erythropoietin (EPO). Hepcidin varied from 0.2 to 193 ng/mL. The median increased from 23.3 ng/mL [8.8–28.7] to 36.1 ng/mL [14.1–92.3] when mGFR decreased from ≥60 to <15 mL/min/1.73 m2 (p = 0.02). Patients with absolute iron deficiency (transferrin saturation (TSAT) <20% and ferritin <40 ng/mL) had the lowest hepcidin levels (5.0 ng/mL [0.7–11.7]), and those with a normal iron profile (TSAT ≥20% and ferritin ≥40), the highest (34.5 ng/mL [23.7–51.6]). In multivariate analysis, absolute iron deficiency was associated with lower hepcidin values, and inflammation combined with a normal or functional iron profile with higher values, independent of other determinants of hepcidin concentration, including EPO, mGFR, and albuminemia. The hepcidin level, although it rose overall when mGFR declined, collapsed in patients with absolute iron deficiency. There was a significant interaction with iron status in the association between Hb and hepcidin. Except in absolute iron deficiency, hepcidin’s negative association with Hb level indicates that it is not down-regulated in CKD anemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号