首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this experiment was to investigate the effect of milking frequency and nutritional level on some aspects of animal health. Holstein-Friesian cows (n = 60) were assigned post calving to a factorial arrangement of treatments; twice a day (TAD) milking on a high or low nutritional level; once a day (OAD) milking on a high or low nutritional level. Milking characteristics were recorded daily. Blood samples to evaluate changes in the composition of the blood cells, milk leakage, udder tension and locomotory ability were measured on four occasions. Teat-ends were classified for hyperkeratosis (HK) monthly post partum. TAD had longer daily milking times (P < 0.001) compared with OAD cows. There was no effect of milking frequency or nutritional level on morning milking time, time to milk letdown or peak milk flow rate (P>0.05). High nutritional level cows had higher average flow-rates (P < 0.05) than low nutritional level cows. Neither milking frequency nor nutritional level affected HK (P>0.05). However, HK values were positively correlated with daily milking time for OAD cows for 6 months of lactation (P < 0.05). This correlation was significant (P < 0.01) for cows milked OAD on high nutrition during the peak lactation period. OAD cows had higher levels of milk leakage compared with TAD cows during the month of May (P < 0.01). Cows on high nutrition milked OAD showed higher udder firmness scores than cows milked once or twice daily at the low nutrition level in June and July (P < 0.05). OAD cows had higher locomotion scores compared with TAD cows (P < 0.001). Locomotion and udder firmness scores were significantly correlated for OAD in June (P < 0.05). OAD cows had lower blood lymphocyte counts, numerically higher counts of neutrophil and a higher monocyte count at peak lactation compared with TAD cows suggesting that OAD cows had altered immune responses. The increase in milk leakage, higher udder firmness and locomotion scores in conjunction with changes in blood cells, suggests that OAD milking may have caused some discomfort to the cows during peak lactation. A reduction in the concentrate input to OAD cows during this period could ameliorate this problem.  相似文献   

2.
Milk yield per cow has continuously increased in many countries over the last few decades. In addition to potential economic advantages, this is often considered an important strategy to decrease greenhouse gas (GHG) emissions per kg of milk produced. However, it should be considered that milk and beef production systems are closely interlinked, as fattening of surplus calves from dairy farming and culled dairy cows play an important role in beef production in many countries. The main objective of this study was to quantify the effect of increasing milk yield per cow on GHG emissions and on other side effects. Two scenarios were modelled: constant milk production at the farm level and decreasing beef production (as co-product; Scenario 1); and both milk and beef production kept constant by compensating the decline in beef production with beef from suckler cow production (Scenario 2). Model calculations considered two types of production unit (PU): dairy cow PU and suckler cow PU. A dairy cow PU comprises not only milk output from the dairy cow, but also beef output from culled cows and the fattening system for surplus calves. The modelled dairy cow PU differed in milk yield per cow per year (6000, 8000 and 10 000 kg) and breed. Scenario 1 resulted in lower GHG emissions with increasing milk yield per cow. However, when milk and beef outputs were kept constant (Scenario 2), GHG emissions remained approximately constant with increasing milk yield from 6000 to 8000 kg/cow per year, whereas further increases in milk yield (10 000 kg milk/cow per year) resulted in slightly higher (8%) total GHG emissions. Within Scenario 2, two different allocation methods to handle co-products (surplus calves and beef from culled cows) from dairy cow production were evaluated. Results showed that using the 'economic allocation method', GHG emissions per kg milk decreased with increasing milk yield per cow per year, from 1.06 kg CO2 equivalents (CO2eq) to 0.89 kg CO2eq for the 6000 and 10 000 kg yielding dairy cow, respectively. However, emissions per kg of beef increased from 10.75 kg CO2eq to 16.24 kg CO2eq due to the inclusion of suckler cows. This study shows that the environmental impact (GHG emissions) of increasing milk yield per cow in dairy farming differs, depending upon the considered system boundaries, handling and value of co-products and the assumed ratio of milk to beef demand to be satisfied.  相似文献   

3.
Automatic milking systems (AMS), or milking robots, are becoming widely accepted as a milking technology that reduces labour and increases milk yield. However, reported amount of labour saved, changes in milk yield, and milk quality when transitioning to AMS vary widely. The purpose of this study was to document the impact of adopting AMS on farms with regards to reported changes in milking labour management, milk production, milk quality, and participation in dairy herd improvement (DHI) programmes. A survey was conducted across Canada over the phone, online, and in-person. In total, 530 AMS farms were contacted between May 2014 and the end of June 2015. A total of 217 AMS producers participated in the General Survey (Part 1), resulting in a 41% response rate, and 69 of the respondents completed the more detailed follow-up questions (Part 2). On average, after adopting AMS, the number of employees (full- and part-time non-family labour combined) decreased from 2.5 to 2.0, whereas time devoted to milking-related activities decreased by 62% (from 5.2 to 2.0 h/day). Median milking frequency was 3.0 milkings/day and robots were occupied on average 77% of the day. Producers went to fetch cows a median of 2 times/day, with a median of 3 fetch cows or 4% of the herd per robot/day. Farms had a median of 2.5 failed or incomplete milkings/robot per day. Producers reported an increase in milk yield, but little effect on milk quality. Mean milk yield on AMS farms was 32.6 kg/cow day. Median bulk tank somatic cell count was 180 000 cells/ml. Median milk fat on AMS farms was 4.0% and median milk protein was 3.3%. At the time of the survey, 67% of producers were current participants of a DHI programme. Half of the producers who were not DHI participants had stopped participation after adopting AMS. Overall, this study characterized impacts of adopting AMS and may be a useful guide for making this transition.  相似文献   

4.
This study aimed at comparing the effects of once-a-day (OAD) milking during the descending phase of lactation between cows from the two most common breeds in France (Holstein and Montbéliarde). This study was carried on during two successive summers on a total of 50 Holstein and 38 Montbéliarde cows. During 7 weeks, half of the cows from each breed was milked OAD while the other half was milked twice a day (TAD). The animals were also followed for the next 3 or 5 weeks when they were all milked TAD, to check for any residual effect of OAD milking. The behaviour of OAD cows was observed around milking time. The incidence of diseases, the main performance variables (milk production, milk flow rate, live weight and body condition score), the detailed composition of milk (fat, protein, lactose, somatic cells, minerals, pH, free fatty acid (FFA), nitrogen fractions and enzymes) and some technological variables (clotting time and curd firmness) were measured on all cows.Some signs of disturbance were observed in the OAD cows at the time when milking was omitted: some cows mooed, some went close to the exit of the paddock, some leaked milk prior to milking. However, these signs disappeared after 2 days. After the experimental period, the live weight and the body condition score of TAD and OAD cows did not differ significantly. OAD cows produced 4.5 kg/day less than TAD (P < 0.001), this being more marked in Holstein (5.7 kg/day, P < 0.001) than Montbéliarde (3.3 kg/day, P < 0.001) cows. The milk contents of fat, whey protein, casein, total protein and phosphorus, and its plasminogen activity, were higher with OAD cows while lactose and FFA contents, and lipoprotein lipase activity were lower, with no interaction observed with breed. During the subsequent 3 weeks, when all cows were again milked TAD, OAD cows still produced 1.7 kg/day less milk (P < 0.01) with slightly higher fat and protein content.OAD milking for 7 weeks during the descending phase of lactation decreased milk production but increased milk content of most components, with a low residual effect. Montbéliarde cows were less affected by OAD milking than Holstein cows.  相似文献   

5.
6.
A deterministic bio-economic model was developed to estimate economic weights for genetic improvement of lactation milk yield, fat yield, age at first calving, calving interval, mature weight and survival under low, medium and high production systems in the Tropics. Input parameters were obtained from dairy production systems in Kenya which has a tropical environment. The highest proportion of revenue is from the sale of milk followed by sale of heifers, cull cows and sale of male calves under all production systems. On the other hand, feed cost is the most important production cost followed by labour, marketing, reproduction and health costs, respectively. Economic values for the six traits were derived from a profit equation using revenue and production costs per cow per year. The economic values were then discounted using diffusion coefficients which account for differences between traits in the time when the improvement is expressed. Economic weights were robust to changes in input and output prices, changes in feeding strategies, and changes in milk and surplus heifer marketing strategies. Genetic standard deviations were multiplied by economic values to standardise the economic value of traits and to compare their potential for economic response. When expressed as proportion of their sum, these relative economic weights under the low, medium and high production systems for lactation milk yield were 51.36, 59.79 and 63.98%; for fat yield 4.50, 10.69 and 9.05%; for age at first calving 3.16, 2.66 and 0.55%; for calving interval 33.59, 19.88 and 20.05%; for mature weight 1.55, 1.34 and 1.19% and for survival rate 5.84, 5.64 and 5.18%, respectively. The predicted responses followed the same pattern as the relative economic weights. This shows that milk yield and calving interval were most important in all production systems but the value of response for traits differed between production systems with more emphasis on milk yield and less on calving interval in the high production systems. Moderate correlations were estimated between the breeding objective for the low, medium and high production systems. To maximise response in the overall breeding objective, different selection criteria are required for the three production systems.  相似文献   

7.
A stochastic bio-economic model has been used to determine the effects of new reproductive technologies over a 15-year period. A strategy of using conventional artificial insemination (AI) or embryo transfer (ET) using two sex-controlled embryos at different conception rates (CRs) and herd sizes resulted in a 24 state model. The genetic means of AI population increased over the years, and the genetic means of milk production for all of the embryo strategies were greater than those of AI. In addition, the genetic means of milk yield using different embryo-based scenarios in the expanding herds were greater than those for the fixed herds. The net profit of using sexed ET in the expanding herds was greater (P < 0.05) than that of fixed size herds. In general, there was a roughly consistent trend in net profit per cow for sexed ET strategies in the expanding herds over the years, but there was an increasing trend in net profit per cow for sexed ET strategies in the fixed herds over the years. Medium to high CRs for ET and the use of sex-controlled embryo systems, especially for induction of twin births to produce dairy replacements, will be critical elements of a system that produces significant numbers of female calves. The greater number of female calves produced in the sex-controlled scenarios allows the farmer to select animals with the best genetic potential as dairy replacement heifers; therefore, the rate of genetic gain increased in the dairy herd. Results of sensitivity analyses showed that a significant decrease in the production costs and increase in the ET performance are essential for embryo-based technologies to be profitable.  相似文献   

8.
The results herein presented furnish exact critical evidence for the conclusion that the most of the milk is present as such in the udder of dairy cattle at the time of milking. The amount of milk which may be secreted during milking cannot, on the basis of these results, be over 20 per cent of the milk yield of the cow. The results show clearly that the size of the udder measures closely the amount of milk which the cow is able to secrete. The results indicate that about 1/5 of a pound of secreting tissue is necessary for the secretion of a pound of milk during a period of 15 hours. The weight of the udder during the period that the cow is dry appears to be between 6 and 8 pounds.  相似文献   

9.
The objective of this study is to quantify the milk production response per cow and per hectare (ha) for an incremental stocking rate (SR) change, based on a meta-analysis of published research papers. Suitable experiments for inclusion in the database required a comparison of at least two SRs under the same experimental conditions in addition to details on experimental length and milk production results per cow and per ha. Each additional increased SR treatment was also described in terms of the relative milk production change per cow and per ha compared to the lower base SR (b_SR). A database containing 109 experiments of various lengths with 131 comparisons of SR was sub-divided into Type I experiments (common experimental lengths) and Type II experiments (variable experimental lengths). Actual and proportional changes in milk production according to SR change were analysed using linear mixed model procedures with study included as a random effect in the model. Low residual standard errors indicated a good precision of the predictive equations with the exception of proportional change in milk production per cow. For all milk yield variables analysed, the results illustrate that while production per cow is reduced, a strong positive relationship exists between SR and milk production per ha. An SR increase of one cow/ha resulted in a decrease in daily milk yield per cow of 7.4% and 8.7% for Type I and Type II data, respectively, whereas milk yield per ha increased by 20.1% and 19.6%, respectively. Within the Type II data set, a one cow/ha increase in SR also resulted in a 15.1% reduction in lactation length (equivalent to 42 days). The low predictability of proportional change in milk production per cow according to the classical SR definition of cows per ha over a defined period suggests that SR may be more appropriately defined in terms of the change in available feed offered per animal within each treatment.  相似文献   

10.
Many governments have signed up to greenhouse gas emission (GHGE) reduction programmes under their national climate change obligations. Recently, it has been suggested that the use of extended lactations in dairy herds could result in reduced GHGE. Dairy GHGE were modelled on a national basis and the model was used to compare emissions from lactations of three different lengths (305, 370 and 440 days), and a current ‘base’ scenario on the basis of maintaining current milk production levels. In addition to comparing GHGE from the average ‘National Herd’ under these scenarios, results were used to investigate how accounting for lactations of different lengths might alter the estimation of emissions calculated from the National Inventory methodology currently recommended by Intergovernmental Panel on Climate Change. Data for the three lactation length scenarios were derived from nationally recorded dairy performance information and used in the GHGE model. Long lactations required fewer milking cows and replacements to maintain current milk yield levels than short ones, but GHGEs were found to rise from 1214 t of CO2 equivalent (CE)/farm per year for lactations of 305 days to 1371 t CE/farm per year for 440-day lactations. This apparent anomaly can be explained by the less efficient milk production (kg milk produced per kg cow weight) found in later lactation, a more pronounced effect in longer lactations. The sensitivity of the model to changes in replacement rate, persistency and level of milk yield was investigated. Changes in the replacement rate from 25% to 20% and in persistency by −10% to +20% resulted in very small changes in GHGE. Differences in GHGE due to the level of milk yield were much more dramatic with animals in the top 10% for yield, producing about 25% less GHGE/year than the average animal. National Inventory results were investigated using a more realistic spread of lactation lengths than recommended for such calculations using emissions calculated in the first part of the study. Current UK emission calculations based on the National Inventory were 329 Gg of methane per year from the dairy herd. Using the national distribution of lactation lengths, this was found to be an underestimate by about 10%. This work showed that the current rise in lactation length or a move towards calving every 18 months would increase GHGE by 7% to 14% compared with the current scenario, assuming the same milk yield in all models. Increased milk yield would have a much greater effect on reducing GHGE than changes to lactation length, replacement rate or persistency. National Inventory methodology appears to underestimate GHGE when the distribution of lactation lengths is considered and may need revising to provide more realistic figures.  相似文献   

11.
This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set.  相似文献   

12.
The adoption of intensive production systems, such as compost bedded pack (CB) and freestall (FS), has increased recently in tropical regions, mainly replacing the drylot system (DL). Thus, our objectives were to compare production costs, economic outcomes, and risk of dairy operations in CB, FS, and DL systems. We collected data from 2 181 Brazilian farms over 120 consecutive months; 960 farms (144 CB, 133 FS, and 683 DL) met our selection criteria. All costs were modeled for two animal production categories: milking cows and non-milking animals. We used a regression model that included linear and quadratic parameters, and we added the production system as a fixed variable for all parameters tested with this model. Consultant, year, herd, and herd × system interaction were included in the model as random variables. Further, we simulated annual technical and economic indexes per farm. In addition, we developed a risk analysis to measure the probability of negative profit of the farms based on a 14-year historical series of milk prices. All production costs were affected by the system. Feed, medicine, sundry, and labor costs per farm per year were greater in DL farms when milk yield (MY) was greater than 3 500 L/day. The variables such as milk yield, assets per liter, asset turnover rate, return on assets, operational profit, profit per cow, and per liter of milk variables were greater in CB and FS with high MY (>3 000 L/day). Nonetheless, DL had the greatest economic indexes with a lower MY (<3 000 L/day), lower operating costs, and greater economic outcomes. The risk analysis indicated that the probability of negative profit (risk) was reduced for CB and FS as MY increased, but DL had the lowest risk with low MY levels. In conclusion, we suggest DL as the most attractive system for farms with MY between 150 and 3 000 L of milk/day as the DL had the lowest risk and the greatest profit in this production scale. Despite similar outcomes for CB and FS in most of the farms, the profit per cow ($/year), assets turnover rate (%), risk (%) and expected profit ($/L) analysis indicated that CB could be recommended for farms with MY greater than 3 200 L of milk/day, whereas based on risk (%) and expected profit ($/L), FS would be the most profitable system in dairies producing more than 8 000 L of milk/day per farm.  相似文献   

13.
Hand-milking methods to assess the completeness of milking in dairy cows need to be reliable as well as quick to apply in order to avoid delays in group milking parlours. A previous study comparing different methods demonstrated that a defined milking handgrip with a strip frequency of 1 Hz was most suitable to assess the completeness of milk-out in dairy cows. In a first step, the present study aimed to investigate how much milk can be hand-milked by the defined handgrip, strip frequency and within a time limit of 15 s per quarter. In a second step, the question was how many udder quarters of a cow needed to be hand-milked for a reliable prediction of the amount of rest milk in the udder. The experiment comprised 28 German-Holstein cows of one herd. The cows were hand-milked after cluster detachment by an experienced milker using the defined milking handgrip. All four quarters per cow were hand-milked during nine consecutive milking sessions. The strip yield per quarter per 15 s hand-milking (SY15) was collected in four different containers and weighed with a digital scale. Afterwards, the remaining milk of all four quarters was collected and weighed in a fifth container with a maximum volume equivalent to a net weight of 540 g milk. The analysis showed that neither the position of the quarter nor the chronological order, in which hand-milking was carried out, had an influence on SY15. The amount of rest milk in the udder could be estimated best by hand-milking all four quarters.  相似文献   

14.
The objective of this experiment was to establish the effect of low-concentrate (LC) and high-concentrate (HC) supplementation in the early and late periods of lactation on milk production and cow traffic in a pasture-based automatic milking (AM) system. In total, 40 cows (10 primiparous and 30 multiparous) were randomly assigned to one of the two treatments. The experimental periods for the early and late lactation trials extended from 23 February to 12 April 2015 and 31 August to 18 October 2015, respectively (49 days in each trial period). The early lactation supplement levels were 2.3 and 4.4 kg/cow per day for LC and HC, respectively, whereas the late lactation supplement levels were 0.5 and 2.7 kg/cow per day for LC and HC, respectively. Variables measured included milking frequency, milking interval, milking outcome and milking characteristics, milk yield/visit and per day, wait time/visit and per day, return time/visit and the distribution of gate passes. As the herd was seasonal (spring) calving, the experimental periods could not run concurrently and as a result no statistical comparison between the periods was conducted. There was no significant effect of treatment in the early lactation period on any of the milk production, milking characteristics or cow traffic variables. However, treatment did significantly affect the distribution of gate passes, with the HC cows recording significantly more gate passes in the hours preceding the gate time change such as hours 7 (P<0.01), 15 (P<0.05), 20, 21 (P<0.001), and 22 (P<0.05), whereas the LC treatment recorded significantly more gate passes in the hours succeeding the gate time change, such as time points 2 (P<0.01) and 10 (P<0.05). There was a significant effect of treatment in late lactation, with HC having a greater milk yield (P<0.01), milking duration and activity/day (P<0.05), while also having a significantly shorter milking interval (P<0.05) and return time/visit (P<0.01). The distribution of gate passes were similar to the early lactation period, with HC also recording a significantly greater number of gate passes during the early morning period (P<0.01) when visitations were at their lowest. Any decision regarding the supplementing of dairy cows with concentrates needs to be examined from an economic perspective, to establish if the milk production and cow traffic benefits displayed in late lactation outweigh the cost of the concentrate; thereby ensuring that the decision to supplement is financially prudent.  相似文献   

15.
Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.  相似文献   

16.
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.  相似文献   

17.
The time constraints of the classic twice-daily milking routine are less easily endured by individual dairy farmers, because of their impact on quality of life. Our aim was to evaluate milk production responses by dairy cows milked twice daily at contrasting intervals. In experiments 1 (20 cows) and 2 (28 cows), four milking regimes were compared during a 3-week period beginning after the peak of lactation. Three groups of five cows were milked twice daily (TDM) with milking intervals of 11 : 13, 7 : 17 and 3 : 21 h in experiment 1, and three groups of seven cows at 11 : 13, 5 : 19 and 2.5 : 21.5 h in experiment 2. One group (five and seven cows respectively) was milked once daily (ODM) in each experiment. In experiment 3 (three groups, 12 cows per group), one group was milked at 10 : 14 h and one at 5 : 19 h, and the third group once daily. Milking treatments began during the second week of lactation and continued for an average of 23 weeks. In experiments 1 and 2, daily milk yields were reduced by 4.1%, 11.5% and 28%, for the 5 : 19, 3 : 21 and ODM milking treatments compared with the 11 : 13 h interval. In experiment 3, the decrease in daily milk yields for 5 : 19 h and ODM was 10% and 40% compared with the 10 : 14 h time interval. In the average daily milk, fat and protein contents and somatic cell counts were not different between the TDM groups, and the ODM group had (or tended to have) a higher fat and protein content. For a given milking, milk fat content decreased from about 60 to 32 g/kg as the preceding milking interval increased from 2.5 to 3 h up to 12 h. It then levelled out and even increased, mainly after 18 to 20 h. Somatic cell count showed a similar trend, and protein content did not change steadily. Dry matter intake, body weight and body condition score were not affected by contrasting milking intervals. After resumption of TDM with conventional intervals, productions of milk, fat and protein no longer differed between the TDM groups. Milk yield of previously ODM cows remained lower by 2 kg/day (P = 0.15) in experiments 1 and 2, and by 7 kg/day (P < 0.05) in experiment 3. These results suggest that TDM at contrasting intervals up to 5 : 19 h is feasible as it decreases milk yield only moderately, especially if implemented from peak of lactation.  相似文献   

18.
Methane (CH4) emissions by dairy cows vary with feed intake and diet composition. Even when fed on the same diet at the same intake, however, variation between cows in CH4 emissions can be substantial. The extent of variation in CH4 emissions among dairy cows on commercial farms is unknown, but developments in methodology now permit quantification of CH4 emissions by individual cows under commercial conditions. The aim of this research was to assess variation among cows in emissions of eructed CH4 during milking on commercial dairy farms. Enteric CH4 emissions from 1964 individual cows across 21 farms were measured for at least 7 days/cow using CH4 analysers at robotic milking stations. Cows were predominantly of Holstein Friesian breed and remained on the same feeding systems during sampling. Effects of explanatory variables on average CH4 emissions per individual cow were assessed by fitting a linear mixed model. Significant effects were found for week of lactation, daily milk yield and farm. The effect of milk yield on CH4 emissions varied among farms. Considerable variation in CH4 emissions was observed among cows after adjusting for fixed and random effects, with the CV ranging from 22% to 67% within farms. This study confirms that enteric CH4 emissions vary among cows on commercial farms, suggesting that there is considerable scope for selecting individual cows and management systems with reduced emissions.  相似文献   

19.
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein–Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (−2.3 kg/cow per day), protein (−95 g/day), fat (−143 g/day) and lactose (−109 g/day) yields, milk protein (−1.2 g/kg) and fat (−2.2 g/kg) concentrations and grass dry matter intake (GDMI; −1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial loss in milk solid yield that occurred during the period of restriction is not recovered.  相似文献   

20.
The aim of this study was to analyze the economic viability of producing dairy goat kids fed liquid diets in alternative of goat milk and slaughtered at two different ages. Forty-eight male newborn Saanen and Alpine kids were selected and allocated to four groups using a completely randomized factorial design: goat milk (GM), cow milk (CM), commercial milk replacer (CMR) and fermented cow colostrum (FC). Each group was then divided into two groups: slaughter at 60 and 90 days of age. The animals received Tifton hay and concentrate ad libitum. The values of total costs of liquid and solid feed plus labor, income and average gross margin were calculated. The data were then analyzed using the Monte Carlo techniques with the @Risk 5.5 software, with 1000 iterations of the variables being studied through the model. The kids fed GM and CMR generated negative profitability values when slaughtered at 60 days (US$ −16.4 and US$ −2.17, respectively) and also at 90 days (US$ −30.8 and US$ −0.18, respectively). The risk analysis showed that there is a 98% probability that profitability would be negative when GM is used. In this regard, CM and FC presented low risk when the kids were slaughtered at 60 days (8.5% and 21.2%, respectively) and an even lower risk when animals were slaughtered at 90 days (5.2% and 3.8%, respectively). The kids fed CM and slaughtered at 90 days presented the highest average gross income (US$ 67.88) and also average gross margin (US$ 18.43/animal). For the 60-day rearing regime to be economically viable, the CMR cost should not exceed 11.47% of the animal-selling price. This implies that the replacer cannot cost more than US$ 0.39 and 0.43/kg for the 60- and 90-day feeding regimes, respectively. The sensitivity analysis showed that the variables with the greatest impact on the final model’s results were animal selling price, liquid diet cost, final weight at slaughter and labor. In conclusion, the production of male dairy goat kids can be economically viable when the kids diet consists mainly of either cow milk or fermented colostrum, especially when kids are slaughtered at 90 days of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号