首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic variability in purebred dogs is known to be highly structured, with differences among breeds accounting for ∼30% of the genetic variation. However, analysis of the genetic structure in non-cosmopolitan breeds and local populations is still limited. Nine Portuguese native dog breeds, and other peripheral dog populations (five) with regional affinities, were characterized using 16 microsatellites and 225 amplified fragment length polymorphism (AFLP) markers, and the pattern of genetic differentiation was investigated. Although the level of breed differentiation detected is below that of other dog breeds, there is in most cases a correlation between breed affiliation and molecular structure. AFLP markers and Bayesian clustering methods allowed an average of 73.1% of individuals to be correctly assigned to source populations, providing robust genotypic assessment of breed affiliation. A geographical genetic structure was also detected, which suggests a limited influence of African dogs on the Iberian breeds. The sampling effect on the estimation of population structure was evaluated and there was a 2.2% decrease in genetic differentiation among breeds when working animals were included. Genetic diversity of stray dogs was also assessed and there is no evidence that they pose a threat to the preservation of the gene pool of native dog breeds.  相似文献   

2.
A genetic analysis was performed on three indigenous Danish horse breeds using 12 microsatellite markers from a standard kit for parental testing. These three breeds are all considered endangered based on their small population sizes. Genetic variation in these three breeds was comparable to other horse breeds in Europe, and they do not seem to be at immediate danger of extinction caused by genetic deterioration. The Knabstrupper breed had more genetic variation, as measured by expected heterozygosity and allelic richness, than the other two breeds (Frederiksborg and Jutland). F(ST) statistics and population assignments confirmed population differentiation into three distinct breeds. The Frederiksborg and Knabstrupper breeds were closer to each other than to the Jutland breed. When establishing conservation priorities for the breeds, the priorities will depend on the conservation goals. Different methods for establishing conservation priorities are also discussed.  相似文献   

3.
The genetic polymorphisms of two functional genes named: myostatin (MSTN) and prolactin (PRL) were investigated in three goat breeds (Barki, Damascus and Zaraibi) using Sanger nucleotide sequence and restriction fragment length polymorphism (RFLP) methods, in order to differentiate between these breeds. Nucleotide sequencing of 337 bp MSTN gene detected five SNPs in Barki breed, two SNPs in Damascus breed, while the Zaraibi breed did not show any SNPs. Moreover, MSTN-HaeIII/PCR-RFLP gave a single Genotype BB was found in all the studied breeds. Meanwhile, Nucleotide sequencing of 196 bp PRL gene showed two SNPs in Damascus breed, one SNPs in Zaraibi breed, while the Barki breed did not show any SNPs. Moreover, PRL-Eco24I/PCR-RFLP showed three genotypes (AA, AB and BB). The genotype AB showed the maximum frequency in all the studied breeds (0.75, 0.85, and 0.90 for Damascus, Barki and Zaraibi breeds, respectively). Observed heterozygosity (Ho) value was higher than expected heterozygosity (He) value all studied breeds. In addition, the values of both Ho and He were the highest in Zaraibi breed (0.90 and 0.51 respectively). Chi-square (χ2) value revealed a significant variation Hardy-Weinberg equilibrium (P < .05) in the three studied breeds. It is the highest in Zaraibi goats and lowest in Damascus breed. The results demonstrated that the PRL-Eco24I/PCR-RFLP polymorphism may be utilized as effective marker for genetic differentiation between goat breeds, but MSTN-HaeIII/PCR-RFLP revealed no polymorphism or variation, thus it is not recommended in the selection program. Moreover, these results open up interesting prospects for future selection programs, especially marker assisted selection. In addition, the results established that PCR-RFLP method is a suitable tool for calculating genetic variability.  相似文献   

4.
Assignment tests have been utilized to investigate population classification, measure genetic diversity and to solve forensic questions. Using microsatellite data from 26 loci genotyped in eight horse breeds we examined how population differentiation, number of scored loci, number of scored animals per breed and loci variability affected individual assignment precision applying log likelihood methods. We found that both genetic differentiation and number of scored loci were highly important for recognizing the breed of origin. When comparing two and two breeds, a proportion of 95% of the most differentiated breeds (0.200 < or = FST < or = 0.259) could be identified scoring only three loci, while the corresponding number was six for the least differentiated breeds (0.080 < or = FST < or = 0.139). An identical proportion of simulated breed crosses, differentiated from their parental breeds by FST estimates in the range 0.050-0.069, was identified when scoring 12 loci. This level of source identification was not obtained for the less differentiated breed crosses. The current data further suggested that population sample size and locus variability were not critical for the assignment precision as long as moderately large sample sizes (> or = 20 animals per population) and fairly variable loci were used.  相似文献   

5.
Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of HE found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.  相似文献   

6.
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity.  相似文献   

7.
Governmental and other agencies may require dog caregivers (owners) to provide breed identification of their dogs. This study compares breed identification by adoption agencies with identification by DNA analysis in 20 dogs of unknown parentage. Of the 20 dogs who had been adopted from 17 different locations, the study identified 16 dogs as having (or probably having) 1 or 2 specific breed(s) in their ancestry. DNA analysis of these dogs indicated that 25% (4/16) did in fact contain genetic evidence of an adoption agency's identified breed as one of the predominant breeds in a dog's ancestry. DNA analysis did not detect all specified breeds in 14 of these dogs. That is, 87.5% of the dogs identified by an adoption agency as having specific breeds in their ancestry did not have all of those breeds detected by DNA analysis. The discrepancies between opinions of adoption agencies and identification by DNA analysis suggest that it would be worthwhile to reevaluate the reliability of breed identification as well as the justification of current public and private policies pertaining to specific dog breeds.  相似文献   

8.
Allozyme electrophoresis (horizontal starch gel and PAGE) and histochemical staining techniques were used to study the genetic composition of an endemic southern African domestic dogCanis familiaris Linnaeus, 1758, the Africanis breed. Genetic differentiation was analysed at 21 protein-coding loci. The results were compared to those for three other populations/breeds: representatives of established Western breeds, crossbred dogs of Western descent from rural areas in South Africa, and indigenous Saluki dogs from the Middle East. Nine polymorphic loci were found (Ak-1,-2, Ck, Per, Hb, Po-A-1 to-3 andPo-Tf). Two unique alleles at theCk andPo-A-2 loci separated the Africanis breed from the other groups. There were also significant differences between Africanis and the other breeds in pair-wise comparisons of allelic frequencies at polymorphic loci. An assignment test, fixation index values, gene flow and genetic distance values indicated a closer genetic association between the Africanis and Saluki breeds than with dogs of Western origin. This finding supports archaeological evidence that the endemic Africanis breed was introduced from the Middle East into Africa thousands of years ago, and not through later western influences. The average heterozygosity ranged from 0.106–0.15, with least heterozygosity in the Africanis and most in the rural crossbred group. The percentage of polymorphic loci, the mean number of alleles per locus (biologically more significant than heterozygosity), and conformation of genotypes to Hardy-Weinberg proportions showed no evidence of recent loss of genetic diversity in Africanis. Genetic differentiation and support of archaeological evidence by genetics indicate that the endemic southern African domestic dog breed is unique.  相似文献   

9.
The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two endangered breeds despite their small population size. Estimates of inbreeding coefficient (FIS) were significant for all breeds studied, except for Churra lebrijana breed. The highest inbreeding coefficient (FIS = 0.143) was found in the Spanish mouflon. Genetic differentiation tests (FST = 0.121) and assignment of individuals to populations indicated the existence of defined breed populations, and low genetic flow between these breeds. The highest pairwise Reynolds distance (DR) values were observed between Mouflon and the domestic sheep breeds. Considering only domestic sheep breeds, the Churra lebrijana breed showed the highest pairwise DR values. The lowest values were found between Latxa and the other domestic sheep, except for Churra lebrijana. Results of pairwise DR values, as well as phylogenetic tree and bottleneck analysis showed an important genetic isolation of the Churra lebrijana breed from the other Churra types, and genetic signatures of a demographic bottleneck. Finally, structure analysis of populations detected a population subdivision in the Latxa sheep breed. In conclusion, this study presents valuable insight into the existing genetic variability of two Spanish endangered breeds, as well as the first study in Spanish mouflon based on microsatellite analysis. The high degree of variability demonstrated in Churra tensina and Churra lebrijana implies that these populations are rich reservoirs of genetic diversity.  相似文献   

10.
Dog breeds were created by man choosing for select phenotypic traits such as size, shape, coat color, conformation, and behavior. Rigorous phenotypic selection likely resulted in a loss of genetic information. The present study extends previous dog population observations by assessing the genotypic variation within and across 28 breeds representing the seven recognized breed groups of the American Kennel Club (AKC). One hundred autosomal microsatellite markers distributed across the canine genome were used to examine variation within breeds. Resulting breed-specific allele frequencies were then used in an attempt to elucidate phylogeny and genetic distances between breeds. While the set of autosomal microsatellites was useful in describing genetic variation within breeds, establishing the genetic relatedness between breeds was less conclusive. A more accurate determination of breed phylogeny will likely require the use of single-nucleotide polymorphisms (SNPs).  相似文献   

11.

Background

Cryopreservation of three endangered Belgian sheep breeds required to characterize their intra-breed genetic diversity. It is assumed that the genetic structure of a livestock breed depends mostly on gene flow due to exchanges between herds. To quantify this relation, molecular data and analyses of the exchanges were combined for three endangered Belgian breeds.

Methods

For each breed, between 91 and 225 sheep were genotyped with 19 microsatellites. Genetic differentiations between breeds and among herds within a breed were evaluated and the genetic structure of the breeds was described using Bayesian clustering (Structure). Exchanges of animals between 20, 46 and 95 herds according to breed were identified via semi-directed interviews and were analyzed using the concepts of the network theory to calculate average degrees and shortest path lengths between herds. Correlation between the Reynolds’ genetic distances and the shortest path lengths between each pair of herds was assessed by a Mantel test approach.

Results

Genetic differentiation between breeds was high (0.16). Overall Fst values among herds were high in each breed (0.17, 0.11 and 0.10). Use of the Bayesian approach made it possible to identify genetic groups of herds within a breed. Significant correlations between the shortest path lengths and the Reynolds’ genetic distances were found in each breed (0.87, 0.33 and 0.41), which demonstrate the influence of exchanges between herds on the genetic diversity. Correlation differences between breeds could be explained by differences in the average degree of the animal exchange networks, which is a measure of the number of exchanges per herd. The two breeds with the highest average degree showed the lowest correlation. Information from the exchange networks was used to assign individuals to the genetic groups when molecular information was incomplete or missing to identify donors for a cryobank.

Conclusions

A fine-scale picture of the population genetic structure at the herd level was obtained for the three breeds. Network analysis made it possible to highlight the influence of exchanges on genetic structure and to complete or replace molecular information in establishing a conservation program.  相似文献   

12.
Prioritizing livestock breeds for conservation needs to incorporate both genetic and non-genetic aspects important for the survival of the breeds. Here, we apply a maximum-utility-strategy to prioritize 14 traditional Ethiopian sheep breeds based on their threat status, contributions to farmer livelihoods (current breed merits) and contributions to genetic diversity. Contributions of the breeds to genetic diversity were quantified using Eding''s marker-estimated kinship approaches. Non-genetic aspects included threats (e.g. low population size, low preferences by farmers) and current merits (economic, ecological and cultural merits). Threat analysis identified eight of the 14 breeds as threatened. Analysis of current merits showed that sub-alpine and arid-lowland breeds contribute most to farmer livelihoods in comparison to other breeds. The highest contribution to the genetic diversity conserved was from the Simien breed. Simien showed high between-breed (low between-breed kinship = 0.04) as well as high within-breed diversity (low within-breed kinship = 0.09 and high HE = 0.73 and allelic richness = 6.83). We combined the results on threat status, current breed merits and contributions to genetic diversity to produce a ranking of the 14 breeds for conservation purposes. Our results balance the trade-offs between conserving breeds as insurance against future uncertainties and current sustainable utilization. The ranking of breeds provides a basis for conservation strategies for Ethiopian sheep and contributes to a regional or global conservation plan.  相似文献   

13.
Progressive retinal atrophy (PRA) is a common cause of blindness in many dog breeds. It is most often inherited as a simple Mendelian trait, but great genetic heterogeneity has been demonstrated both within and between breeds. In many breeds the genetic cause of the disease is not known, and until now, the Old Danish Pointing Dog (ODP) has been one of those breeds. ODP is one of the oldest dog breeds in Europe. Seventy years ago the breed almost vanished, but today a population still exists, primarily in Denmark but with some dogs in Germany and Sweden. PRA has been diagnosed in ODP since the late 1990s. It resembles late onset PRA in other dog breeds, and it is inherited as an autosomal recessive trait. In the present study, we performed whole‐genome sequencing and identified a single base insertion (c.3149_3150insC) in exon 1 of C17H2orf71. This is the same mutation previously found to cause PRA in Gordon Setters and Irish Setters, and it was later found in Tibetan Terrier, Standard Poodle and the Polski Owczarek Nizinny. The presence of the mutation in such a diverse range of breeds indicates an origin preceding creation of modern dog breeds. Hence, we screened 262 dogs from 44 different breeds plus four crossbred dogs, and can subsequently add Miniature Poodle and another polish sheepdog, the Polski Owczarek Podhalanski, to the list of affected breeds.  相似文献   

14.
The gene pools of beef cattle breeds bred in Russia were characterized on the basis of inter simple sequence repeat DNA analysis (ISSR analysis). Samples of Aberdeen Angus, Kalmyk, and Kazakh Whitehead breeds from Russia, as well as of Hereford breed, hybrids of Kazakh Whitehead and Hereford breeds, and Kazakh Whitehead breed from the Republic of Kazakhstan, were examined. In the examined breeds, 27 AG-ISSR fragments were identified, 25 of which were polymorphic. The examined breeds were different both in the fragment profiles (the presence/absence of individual ISSR fragments) and in their frequencies. It was demonstrated that the hybrid animals lacked some ISSR fragments that were present with high frequencies in parental forms, suggesting considerable genome rearrangement in the hybrid animals (at the regions of microsatellite localization) in crossings of the individuals from different breeds. The level of genetic diversity in Russian beef breeds was consistent with the values typical of farmed populations (breeds). The genetic diversity parameters assessed by applying Nei’s gene diversity index and the Shannon index varied from 0.0218 to 0.0605 and from 0.0225 to 0.0819, respectively. The highest Shannon index value was detected in the Kalmyk breed (0.0837) and Kazakh Whitehead breed from Russia (0.0819), and the highest level of Nei’s gene diversity index was found in the Kalmyk breed (0.0562) and in both populations of the Kazakh Whitehead breed (0.0509 and 0.0605). The high level of genetic similarity (according to Nei) was revealed between Russian beef cattle breeds and Hereford cattle: 0.839 (for the Kazakh Whitehead breed from Russia) and 0.769 (for the Kalmyk breed).  相似文献   

15.
《Small Ruminant Research》2010,91(1-3):88-94
To determine the genetic diversity and phylogenetic relationships among Chinese sheep, 10 indigenous breeds and one introduced breed were genotyped for 19 microsatellite loci. The mean number of alleles per breed ranged from 5.44 (Guide Black Fur sheep) to 9.13 (Ujumqin sheep and Hulunbeier sheep), the expected heterozygosity varied from 0.623 (Guide Black Fur sheep) to 0.737 (Zhaotong sheep), and the allelic richness ranged from 5.169 (Guide Black Fur sheep) to 7.610 (Zhaotong sheep). The deviation from Hardy–Weinberg equilibrium (HWE) was statistically significant (P < 0.05) at three loci (SRCRSP5, OarAE129 and DYMS1) in most of the breeds. Chinese sheep breeds had maintained a high level of within-population genetic differentiation (95.23%), with the remainder explained by differentiation among populations (4.77%). The genetic differentiation pattern and genetic relationships among Chinese sheep breeds displayed a high consistency with the traditional classification. Both the Bayesian cluster and principal component analyses showed a reliable clustering pattern, which revealed three major clusters in Chinese indigenous sheep (Mongolian sheep, Kazakh sheep and Tibetan sheep), except Zhaotong and Guide Black Fur sheep. There were probably caused by different breeding history, geography isolation and different levels of inbreeding. This study will help to interpret the genetic characters of Chinese indigenous sheep and benefit to the future conservation programs.  相似文献   

16.
The aim of this study was to investigate the genetic diversity within and among three breeds of sheep: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip®. Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds.  相似文献   

17.
Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana–Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (f¯W = 0.0%; CW = −0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (f¯T = −0.7%; CT = −1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (f¯T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (f¯T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.  相似文献   

18.
Pudong White (PW) pigs are distributed in the Taihu region of China and are characterized by their completely white coats. A heated debate concerning this genetic resource and its relationship to Taihu and western pig breeds has arisen, due to the white coat of the animals. To determine whether PW is a unique genetic resource, we performed a detailed assessment of the genetic relationships among PW, six breeds from the Taihu population and three western pig breeds, based on whole-genome single nucleotide polymorphism (SNP) data. A total of 68 102 SNPs were identified in the genomes of the tested populations by next-generation sequencing technology, of which, 64 were determined as the potentially specific to PW breed. The genetic distance between PW pigs and the Taihu population was shorter than that between PW and western breeds. The genetic distance within the PW population was small and neighbour-joining tree analysis revealed that all PW individuals clustered into a separated group, indicating a close genetic relationship among PW individuals which may result from a small effective population size (Ne) and inbreeding. The results of both principal component analysis and evaluation using fastSTRUCTURE demonstrated that PW was clearly differentiated from other breeds. Together, these results indicate that PW is a distinctive genetic resource with a unique genetic structure separate from other Taihu and western pig breeds. Furthermore, this genome-wide comprehensive survey of the relationships among PW, Taihu and western pig breeds, demonstrates the rationality of the current breed classification of PW. The results also provide evidence about the unique genetic resource of PW, based on genome-wide genetic markers. These data will improve our understanding of the genetic structure and current state of PW breed, and facilitate the development of a national project for the conservation and utilization of these pigs.  相似文献   

19.
The randomly amplified polymorphic DNA (RAPD) markers were used to detect polymorphism among five breeds of chicken i.e. White Leghorn and Rhodes Island Red (selected for part period egg production and egg mass respectively), Red Cornish and White Plymouth Rock (selected for early body weights) and Kadaknath (native breed). Twelve of the fifty random primers screened yielded distinct polymorphic RAPD profiles. Of the total 96 fragments amplified, about 25% showed polymorphism. Using the RAPD data matrix, the within population and between population genetic similarity was estimated. The selected improved breeds showed higher within population genetic similarity in comparison to the native breed. The two meat type breeds showed a high level of genetic similarity between themselves. The White Leghorn breed showed a low genetic similarity with other breeds. The native breed showed highest similarity with Rhodes Island Red. The dendogram was constructed to show phylogenetic relationship among these breeds. As expected, the genetic distances were lowest within similar type breeds and were highest between dissimilar type breeds. The results indicated the effectiveness of RAPD in detecting polymorphism between chicken populations and their applicability in population studies and establishing genetic relationships among the chicken populations.  相似文献   

20.
S Wilkinson  C Haley  L Alderson  P Wiener 《Heredity》2011,106(2):261-269
Recently developed Bayesian genotypic clustering methods for analysing genetic data offer a powerful tool to evaluate the genetic structure of domestic farm animal breeds. The unit of study with these approaches is the individual instead of the population. We aimed to empirically evaluate various individual-based population genetic statistical methods for characterization of genetic diversity and structure of livestock breeds. Eighteen British pig populations, comprising 819 individuals, were genotyped at 46 microsatellite markers. Three Bayesian genotypic clustering approaches, principle component analysis (PCA) and phylogenetic reconstruction were applied to individual multilocus genotypes to infer the genetic structure and diversity of the British pig breeds. Comparisons of the three Bayesian genotypic clustering methods (, and ) revealed some broad similarities but also some notable differences. Overall, the methods agreed that majority of the British pig breeds are independent genetic units with little evidence of admixture. The three Bayesian genotypic clustering methods provided complementary, biologically credible clustering solutions but at different levels of resolution. detected finer genetic differentiation and in some cases, populations within breeds. Consequently, it estimated a greater number of underlying genetic populations (K, in the notation of Bayesian clustering methods). Two of the Bayesian methods ( and ) and phylogenetic reconstruction provided similar success in assignment of individuals, supporting the use of these methods for breed assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号