首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Endocrine practice》2016,22(12):1415-1421
Objective: Because only the free fraction of serum cortisol can readily access glucocorticoid receptors, we investigated whether or not a gender-related difference in serum free cortisol (FC) exists in the basal and adrenocorticotropic hormone (ACTH)-stimulated state.Methods: Serum total cortisol (TC) and FC were measured in 323 subjects (175 men; 148 women). Additionally, the low-dose 1-μg ACTH test was performed in 56 subjects (30 women, 26 men). Subjects were healthy volunteers, recruited in a preventive medicine screening program and an outpatient clinic.Results: Overall, basal serum TC and FC level were ~18 and ~33%, respectively, higher in men than in women (TC, 14.5 ± 0.33 μg/dL vs. 12.3 ± 0.33 μg/dL; P<.0001; FC, 0.68 ± 0.02 μg/dL vs. 0.51 ± 0.02 μg/dL; P<.0001). The higher FC in men relative to women was apparent across a wide age range (17 to 86 years) and persisted after adjustment for age and body mass index. The FC fraction (%FC, out of TC) was concordantly higher in men (5.4 ± 0.09% vs. 4.8 ± 0.3%; P = .046). FC was not related to the estimated menopausal status (women age below and above 47, 50, or 53 years). ACTH-stimulated FC levels were significantly higher in men compared to women, as reflected by the area under the response curve (49.4 ± 3.4 μg × min vs. 39.6 ± 2.2 μg × min; P = .0014).Conclusion: Gender is an unrecognized determinant of serum FC in humans. The possibility of lifelong exposure to the higher bioactive fraction of cortisol under basal conditions or daily stress involving ACTH stimulation should be further investigated in the context of gender-related phenotypic features such as “android” (visceral) fat deposition and longevity.Abbreviations:ACTH = adrenocorticotropic hormoneBMI = body mass indexCBG = cortisol-binding globulinFC = free cortisolHPA = hypothalamic-pituitary-adrenalTC = total cortisol  相似文献   

2.
《Endocrine practice》2019,25(8):800-808
Objective: To detect a possible correlation between timing of the peak value of growth hormone (GH) during stimulatory tests (STs) and the effectiveness of treatment with recombinant human growth hormone (rhGH) in children with idiopathic GH deficiency (iGHD).Methods: We retrospectively studied 92 patients with iGHD (57 boys; mean age at diagnosis: 9.93 years). Diagnosis was confirmed by 2 different STs, glucagon stimulation test (GST), and clonidine stimulation test (CST). Auxologic parameters were recorded, while observed and predicted (according to KIGS Prediction Model) height velocity during the first year of treatment and the index of responsiveness (IoR) were calculated for the prepubertal children (n = 65).Results: Atypical GST was defined as that with peak GH value at time 0 minutes, 30 minutes, 60 minutes, or 180 minutes, whereas atypical CST was defined as that with peak timing at 0 minutes, 30 minutes, or 120 minutes. Atypical GST was detected in 18 patients (19.57%). IoR was lower in the prepubertal children with atypical GST (-1.81 ± 0.67 versus -1.34 ± 0.85; P = .051). In the CST, the 18 children who had atypical timing, had significantly lower IoR (-1.86 ± 0.66 versus -1.35 ± 0.84; P = .047). When the patients were categorized according to the number of atypical tests, significant differences in the IoR were detected (-2.09 ± 0.68 with 2 atypical STs &lsqb;n = 6], -1.64 ± 0.61 with 1 atypical ST &lsqb;n = 16], and -1.29 ± 0.87 with no atypical ST &lsqb;n = 43], P = .045).Conclusion: The presence of atypical peak GH timing during ST may be a factor that predicts lower growth hormone velocity during the first year of rhGH treatment in prepubertal children with iGHD.Abbreviations: CST = clonidine stimulation test; GH = growth hormone; GHD = growth hormone deficiency; GST = glucagon stimulation test; iGHD = idiopathic growth hormone deficiency; IoR = index of responsiveness; rhGH = recombinant human growth hormone; SDS = standard deviation scores; ST = stimulatory test  相似文献   

3.
《Endocrine practice》2018,24(1):60-68
Objective: High-dose glucocorticoids (HDG) are used in the treatment of autoimmune diseases. Glucocorticoids-induced hyperglycemia (GIH) is often described in elderly patients. In young patients with autoimmune diseases, however, the risk for GIH has not been well characterized.Methods: We recruited 24 inpatients (median age, 32 years; interquartile range, 25–42) with exacerbations of autoimmune diseases, receiving 1 to 2 mg/kg/day prednisone or equivalent methylprednisone. Fourteen subjects were naïve to glucocorticoids (group 1) and 10 subjects were on glucocorticoid maintenance (≤15 mg/day prednisone at least 3 months) (group 2) prior to HDG. All subjects were monitored by continuous glucose monitoring system (CGMS) for 3 days.Results: GIH developed in 21 (91%) subjects, 11/13 in group 1 and 10/10 in group 2. The main peak of glucose excursion (128.7 ± 6.4 mg/dL, group 1; 143.9 ± 10.0 mg/dL, group 2) occurred at 2 to 3 pm. Another peak occurred before sleep. Two-hour mean postprandial glucose levels were normal in both groups: breakfast, 105.0 ± 28.4 versus 125.6 ± 24.4 mg/dL, P = .065; lunch, 115.7 ± 21.1 versus 135.9 ± 29.0 mg/dL, P = .082; dinner, 122.8 ± 18.5 versus 137.8 ± 26.4 mg/dL, P = .144 in groups 1 and 2, respectively. There was a positive association between pretreatment hemoglobin A1C and peak glucose levels (P<.0001). Notably, 35% of our subjects experienced early morning hypoglycemia (65.2 ± 2.8 mg/dL).Conclusion: In hospitalized young patients with auto-immune diseases, CGMS data revealed that short-term consistent HDG treatment induced mild hyperglycemia, peaking in the early afternoon and before sleep. Early morning hypoglycemia was found in 35%.Abbreviations: A1C = hemoglobin A1C; AUC = the area under the curve; BG = blood glucose; BMI = body mass index; CGMS = continuous glucose monitoring system; DM = diabetes mellitus; FBG = fasting blood glucose; GA = glycated albumin; GCs = glucocorticoids; GIH = glucocorticoids-induced hyperglycemia; HDG = high-dose glucocorticoids; HOMA-IR = Homeostasis Model Assessment-Insulin Resistance; IG = interstitial glucose; IQR = interquartile range; PUMCH = Peking Union Medical College Hospital; SLE = systemic lupus erythematosus  相似文献   

4.
《Endocrine practice》2020,26(11):1269-1276
Objective: To investigate possible causes of menstrual disorders and androgen-related traits in young women with type 1 diabetes mellitus (T1DM).Methods: Fifty-three women with T1DM (duration 8.0 ± 5.6 years), 41 women with (polycystic ovary syndrome) PCOS, and 51 controls matched for age (19.4 ± 4.3 years vs. 21.2 ± 2.7 years vs. 20.8 ± 3.1 years; P>.05) and body mass index (BMI) (22.2 ± 2.7 kg/m2 vs. 21.9 ± 2.0 kg/m2 vs. 21.4 ± 1.9 kg/m2; P>.05) were prospectively recruited.Results: Two women (3.8%) in the T1DM group had not experienced menarche (at 15.5 and 16.6 years); of the rest, 23.5% had oligomenorrhea, 32.1% hirsutism, and 45.3% had acne. The age at menarche was delayed in the T1DM group compared to controls (12.7 ± 1.3 vs. 12.0 ± 1.0 years; P = .004), while no difference was observed with the polycystic ovary syndrome (PCOS) group (12.4 ± 1.2 years). There were no differences in total testosterone (0.43 ± 0.14 ng/mL vs. 0.39 ± 0.14 ng/mL; P>.05), dehydroepiandrosterone sulfate (DHEA-S) (269 ± 112 μg/dL vs. 238 ± 106 μg/dL; P>.05) or Δ4-androstenedione (2.4 ± 1.3 ng/mL vs. 1.9 ± 0.5 ng/mL; P>.05) concentrations between T1DM and controls. However, patients with T1DM had lower sex hormone binding globulin (SHBG) concentrations than controls (61 ± 17 nmol/L vs. 83 ± 18.1 nmol/L; P = .001), which were even lower in the PCOS group (39.5 ± 12.9 nmol/L; P = .001 compared with T1DM). The free androgen index (FAI) was higher in the PCOS group compared with both other groups (T1DM vs. PCOS vs. controls: 2.53 ± 0.54 vs. 7.88 ± 1.21 vs. 1.6 ± 0.68; P<.001). FAI was higher in patients with T1DM compared to controls as well (P = .038). There was no difference in DHEA-S concentrations between T1DM and PCOS patients (269 ± 112 μg/dL vs. 297 ± 100 μg/dL; P>.05).Conclusion: Menstrual disorders and androgen-related traits in young women with T1DM may be attributed to an increase in androgen bioavailability due to decreased SHBG concentrations.  相似文献   

5.
《Endocrine practice》2019,25(6):562-571
Objective: To investigate in vivo correlates of erectile dysfunction (ED) in male patients with acromegaly.Methods: Fifty-one male patients with acromegaly were assessed by the International Index of Erectile Function-5 and Acromegaly Quality of Life (Acro-QoL) questionnaires. The measurement of serum nitric oxide (NO) were performed in patients and age-matched nonacromegalic controls.Results: Among 51 patients analyzed, 32 (62.7%) had ED. Patients with ED showed lower Acro-QoL scores regarding global (69.8 ± 17.7 versus 79.4 ± 11.2; P = .035) and personal relationship dimensions (59.6 ± 22.1 versus 76.8 ± 17.6; P = .012) than non-ED patients. ED patients were older (44.5 ± 11.2 years versus 33.2 ± 8.5 years; P = .04) and showed higher growth hormone (GH) levels (15.5 μg/L &lsqb;interquartile range of 9.5 to 34.5 μg/L] versus 5.9 μg/L &lsqb;interquartile range of 3.4 to 13.9 μg/L]; P = .001) compared to non-ED patients. The cutoff values for identifying ED were 7.9 μg/L for random GH and 5.3 μg/L for GH nadir after oral administration of 75 g of glucose. There was no significant difference in total testosterone levels between the two groups (6.36 ± 4.24 nmol/L versus 9.54 ± 5.50 nmol/L; P = .299). The NO levels in patients with acromegaly were significantly lower than those in nonacromegalic controls (8.77 ± 1.78 μmol/L versus 19.19 ± 5.02 μmol/L, respectively; P = .049). Furthermore, the NO levels were even lower in ED patients than those in non-ED patients (5.14 ± 0.98 μmol/L versus 12.09 ± 3.44 μmol/L; P = .027).Conclusion: Our study showed that ED is prevalent in male acromegalic patients and may be associated with systemic endothelial dysfunction induced by excessive GH. Further studies investigating the mechanism of GH and ED are required.Abbreviations: Acro-QoL = Acromegaly Quality of Life; ED = erectile dysfunction; FSH = follicle-stimulating hormone; GH = growth hormone; IGF-1 = insulin-like growth factor 1; IIEF-5 = international index of erection function-5; LH = luteinizing hormone; MRI = magnetic resonance imaging; NO = nitric oxide; OGTT = oral glucose tolerance test; QoL = quality of life; ROC = receiver operating characteristic  相似文献   

6.
《Endocrine practice》2016,22(1):22-29
Objective: Levothyroxine (LT4) replacement in hypothyroid obese patients is poorly understood. We assessed whether the LT4 regimen required to achieve euthyroidism differs between nonobese and obese hypothyroid females.Methods: We retrospectively identified nonobese and obese females who received LT4 starting with a standard dose of 1.6 μg/kg after total thyroidectomy for preoperative diagnosis of benign goiter. We examined the association between LT4 dosage required to achieve euthyroid state (thyroid-stimulating hormone [TSH] 0.4–2.5 mIU/L) and patient characteristics using linear regression models with and without adjustment for age, ethnicity, medication use, and postoperative hypoparathyroidism.Results: We identified 32 females (15 nonobese/17 obese) who achieved euthyroid state. Obese patients weighed more (104.1 ± 22.5 vs. 64.9 ± 10.0 kg, P<.0001) and required a higher final LT4 than nonobese (146 ± 38 vs. 102 ± 12 μg, P = .0002) but LT4 requirements per kg total body weight (TBW) were similar (1.60 ± 0.29 vs. 1.42 ± 0.38 μg/kg, P = .15). LT4 dose per kg ideal body weight (IBW) was higher in obese than in nonobese females (2.62 ± 0.67 vs. 1.88 ± 0.28 μg/kg, P = .0004) and this difference persisted after adjustments (P<.05). During LT4 titration, 47% and 20% of obese and nonobese patients had subnormal TSH episodes, respectively (P = .11). After taking LT4 compliance, malabsorption, and competing medication use into consideration, we found marked LT4 dose variability in obese patients. Patients who needed a mean daily LT4 dose ≤150 mg (124 ± 16 μg/day) compared with >150 μg (198 ± 4 μg/day) demonstrated lower LT4 per TBW (1.25 ± 0.18 vs. 1.84 ± 0.43 μg/kg, P = .03) and IBW (2.28 ± 0.47 vs. 3.44 ± 0.18 μg/kg, P<.0001), respectively.Conclusion: The standard approach to LT4 replacement in obese and nonobese females after thyroidectomy is imprecise. Mean daily LT4 doses in obese and nonobese patients were similar if expressed per kg TBW, though there was variability in the final LT4 among obese patients. We suggest initiating LT4 at a dose lower than that routinely recommended in obese females.Abbreviations:AACE = American Association of Clinical EndocrinologistsATA = American Thyroid AssociationBMI = body mass indexIBW = ideal body weightLT4 = levothyroxineTBW = total body weightTSH = thyroid-stimulating hormone  相似文献   

7.
《Endocrine practice》2020,26(1):43-50
Objective: Consensus guidelines recommend that intensive care unit (ICU) patients with blood glucose (BG) levels >180 mg/dL receive continuous intravenous insulin (CII). The effectiveness of CII at controlling BG levels among patients who are eating relative to those who are eating nothing by mouth (nil per os; NPO) has not been described.Methods: We conducted a retrospective cohort study of 260 adult patients (156 eating, 104 NPO) admitted to an ICU between January 1, 2014, and December 31, 2014, who received CII. Patients were excluded for a diagnosis of diabetic ketoacidosis or hyperglycemic hyperosmolar nonketotic syndrome, admission to an obstetrics service, or receiving continuous enteral or parenteral nutrition.Results: Among 22 baseline characteristics, the proportion of patients receiving glucocorticoid treatment (GCTx) (17.3% eating, 37.5% NPO; P<.001) and APACHE II score (15.0 ± 7.5 eating, 17.9 ± 7.9 NPO; P = .004) were significantly different between eating and NPO patients. There was no significant difference in the primary outcome of patient-day weighted mean BG overall (153 ± 8 mg/dL eating, 156 ± 7 mg/dL NPO; P = .73), or day-by-day BG (P = .37) adjusted for GCTx and APACHE score. Surprisingly, there was a significant difference in the distribution of BG values, with eating patients having a higher percentage of BG readings in the recommended range of 140 to 180 mg/dL. However, eating patients showed greater glucose variability (coefficient of variation 23.1 ± 1.0 eating, 21.2 ± 1.0 NPO; P = .034).Conclusion: Eating may not adversely affect BG levels of ICU patients receiving CII. Whether or not prandial insulin improves glycemic control in this setting should be studied.Abbreviations: BG = blood glucose; CII = continuous insulin infusion; CV = coefficient of variation; HbA1c = hemoglobin A1c; ICU = intensive care unit; NPO = nil per os; PDWMBG = patient day weighted mean blood glucose  相似文献   

8.
《Endocrine practice》2016,22(9):1040-1047
Objective: Inpatient hypoglycemia (glucose ≤70 mg/dL) is a limitation of intensive control with insulin. Causes of hypoglycemia were evaluated in a randomized controlled trial examining intensive glycemic control (IG, target 140 mg/dL) versus moderate glycemic control (MG, target 180 mg/dL) on post–liver transplant outcomes.Methods: Hypoglycemic episodes were reviewed by a multidisciplinary team to calculate and identify contributing pathophysiologic and operational factors. A subsequent subgroup case control (1:1) analysis (with/without) hypoglycemia was completed to further delineate factors. A total of 164 participants were enrolled, and 155 patients were examined in depth.Results: Overall, insulin-related hypoglycemia was experienced in 24 of 82 patients in IG (episodes: 20 drip, 36 subcutaneous [SQ]) and 4 of 82 in MG (episodes: 2 drip, 2 SQ). Most episodes occurred at night (41 of 60), with high insulin amounts (44 of 60), and during a protocol deviation (51 of 60). Compared to those without hypoglycemia (n = 127 vs. n = 28), hypoglycemic patients had significantly longer hospital stays (13.6 ± 12.6 days vs. 7.4 ± 6.1 days; P = .002), higher peak insulin drip rates (17.4 ± 10.3 U/h vs. 13.1 ± 9.9 U/h; P = .044), and higher peak insulin glargine doses (36.8 ± 21.4 U vs. 26.2 ± 24.3 U; P = .035). In the case-matched analysis (24 cases, 24 controls), those with insulin-related hypoglycemia had higher median peak insulin drip rates (17 U/h vs. 11 U/h; P = .04) and protocol deviations (92% vs. 50%; P = .004).Conclusion: Peak insulin requirements and protocol deviations were correlated with hypoglycemia.Abbreviations:DM = diabetes mellitusICU = intensive care unitIG = intensive glycemic controlMELD = Model for End-stage Liver DiseaseMG = moderate glycemic controlSQ = subcutaneous  相似文献   

9.
《Endocrine practice》2019,25(3):254-262
Objective: Cystic fibrosis–related diabetes (CFRD) is associated with adverse clinical outcomes and should be screened for by an annual oral glucose tolerance test (OGTT). Since pathophysiologic studies have mainly been performed in a pediatric/adolescent, nontransplanted collective, we aimed to assess parameters of insulin secretion and sensitivity in adult cystic fibrosis (CF) patients after lung transplantation (LT).Methods: Twelve adult CF patients after LT without known diabetes (33.3 ± 11.5 years; body mass index &lsqb;BMI] 21.5 ± 3.3 kg/m2) and 8 control subjects matched by age (36.0 ± 6.6 years; P>.05), BMI (22.3 ± 1.5 kg/m2; P>.05), and gender (CON group) underwent a 3-hour OGTT with glucose, insulin, and C-peptide measurements. Parameters of insulin secretion and sensitivity as well as lipid profiles were assessed.Results: In the CF group, 4 patients were diagnosed with overt diabetes (CFRD) compared to CF patients without diabetes (CF-noDM), of whom 6 had indeterminate glycemia with 1-h glucose values >200 mg/dL. The insulin peak after glucose load occurred after 30 minutes in CON, after 90 minutes in CF-noDM, and was missing in CFRD. Insulin sensitivity was comparable between the groups. Beta-cell glucose sensitivity was markedly reduced in CFRD (10.7 ± 5.8 pmol/min*m2*mM), higher in CF-noDM (39.9 ± 23.4 pmol/min*m2*mM), but still significantly lower compared to CON (108.3 ± 53.9 pmol/min*m2*mM; P = .0008). CFRD patients exhibited increased triglyceride levels and decreased high-density lipoprotein levels.Conclusion: Adult CF patients after LT have profound disturbances in glucose metabolism, with a high rate of undetected diabetes and markedly delayed insulin secretion. Curbed beta-cell glucose sensitivity rather than insulin resistance explains postprandial hyperglycemia and is accompanied by abnormalities in lipid metabolism.Abbreviations: AUC = area under the curve; BMI = body mass index; CF = cystic fibrosis; CFRD = cystic fibrosis–related diabetes; CFTR = cystic fibrosis transmembrane-conductance regulator; CF-TX = cystic fibrosis patients who underwent lung transplantation; CGM = continuous glucose monitoring; HbA1c = glycated hemoglobin; HDL = high-density lipoprotein; INDET = indeterminate glycemia; LDL = low-density lipoprotein; LT = lung transplantation; OGIS = oral glucose sensitivity index; OGTT = oral glucose tolerance test; QUICKI = quantitative insulin sensitivity check index  相似文献   

10.
《Endocrine practice》2019,25(7):663-668
Objective: The aim of this study was to evaluate levothyroxine (LT4) replacement daily doses in patients with central hypothyroidism (CeH) and compare them with those adequate for patients with primary hypothyroidism (P-HYPO).Methods: We included 53 patients with CeH and 57 with P-HYPO, matched by sex, age, weight, and body mass index, in the period of 1 year. At the time of inclusion, all presented a stable and adequate dose of LT4 for at least 3 months, considering as adequate the dose associated with normal thyroid-stimulating hormone (TSH) levels and free thyroxine (T4) in P-HYPO patients, and free T4 levels in CeH patients.Results: The absolute daily dose of LT4 differed significantly between the two groups, 103.0 ± 27.1 μg (CeH) and 89.3 ± 32.0 μg (P-HYPO) (P = .017), even after adjustment for age, gender, and free T4 (P = .04). The LT4 dose adjusted to weight was also higher after adjustment for age, gender and free T4 (P = .04), with an average of 1.3 ± 0.4 μg/kg (CeH) and 1.2 ± 0.4 μg/kg (P-HYPO). Sheehan syndrome patients had a lower absolute daily dose of LT4 (P = .001), and patients who underwent pituitary radiotherapy required higher doses (P = .008). There was no difference in the daily dose of LT4 according to other pituitary hormone deficiencies.Conclusion: The results reinforce the relevance of a careful individualization of LT4 replacement in CeH management and the need for new markers for proper LT4 replacement therapy in such cases.Abbreviations: BMI = body mass index; CeH = central hypothyroidism; GH = growth hormone; LT4 = levothyroxine; P-HYPO = primary hypothyroidism; T3 = triiodothyronine; T4 = thyroxine; TSH = thyroid-stimulating hormone  相似文献   

11.
《Endocrine practice》2015,21(8):936-942
Objective: To examine the relationship between endogenous serum estradiol and vitamin D–binding protein (DBP) and total, free, and bioavailable 25-hydroxyvitamin D (25OHD) concentrations in pre- and postmenopausal women.Methods: In 165 healthy women (ages, 26 to 75 years) not taking any form of exogenous estrogen, the serum concentrations of estradiol, 25OHD, DBP, parathyroid hormone, and albumin were measured. Free and bioavailable 25OHD (free + albumin-bound) levels were calculated from total 25OHD, DBP, and serum albumin levels.Results: Premenopausal women had higher serum 25OHD (31.5 ± 7.9 ng/mL), DBP (45.3 ± 6.2 mg/dL), and estradiol (52.8 ± 35.0 pg/mL) levels than postmenopausal women (26.5 ± 4.9 ng/mL, 41.7 ± 5.7 mg/dL, and 12.9 ± 4.9 pg/mL), respectively. In addition, the calculated free and bioavailable 25OHD levels were higher in prethan postmenopausal women (P<.05). Serum estradiol correlated with DBP (r = 0.22; P<.01) and total 25OHD (r = 0.27; P<.01). In multivariate regression models (with or without serum 25OHD), estradiol was independently associated with DBP (P<.05).Conclusion: Lower estradiol level is one of the factors that contribute to lower DBP levels in older women. Our data indicate that besides well-known factors such as age, gender, and race, serum estradiol concentrations are also a physiologic predictor of DBP concentration.Abbreviations: 25OHD = 25-hydroxyvitamin D BMI = body mass index CV = coefficient of variation DBP = vitamin D–binding protein PTH = parathyroid hormone SHBG = sex hormone–binding globulin  相似文献   

12.
《Endocrine practice》2015,21(2):165-173
ObjectiveThe objective of this study was to evaluate differences in cardiovascular disease (CVD) risk markers in obese adolescents based on diabetes status and race in order to improve risk-reduction intervention strategies.MethodsThis was a retrospective, cross-sectional study of obese adolescents, age 10 to 21 years, who were evaluated at Children’s of Alabama between 2000 and 2012. Subjects were classified by glycated hemoglobin (HbA1c) as having normoglycemia, prediabetes, or type 2 diabetes mellitus (T2DM).ResultsThere were a total of 491 African American (AA) or Caucasian American (CA) subjects. Body mass index was not different between HbA1c and racial groups. Compared to subjects with normoglycemia or prediabetes, subjects with T2DM had higher levels of total cholesterol (TC) (178.6 ± 43.8 mg/dL vs. 161.5 ± 32.5 mg/dL vs. 162.4 ± 30.6 mg/dL; P < .0001) and low-density-lipoprotein cholesterol (107.4 ± 39.2 mg/dL vs. 97.0 ± 31.0 mg/dL vs. 97.5 ± 26.9 mg/dL; P = .0073). Compared with AA subjects, CA subjects had lower high-density-lipoprotein cholesterol (HDL-C) levels (40.4 ± 10.4 mg/dL vs. 44.3 ± 11.9 mg/dL; P = .0005) and higher non-HDL-C levels (129.6 ± 36.2 mg/dL vs. 122.5 ± 37.5 mg/dL; P = .0490). Of the characteristics studied, HbA1c had the most significant positive association with dyslipidemia and was strongly correlated with both TC (β, 4.21; P < .0001) and non-HDL-C (β, 4.3; P < .0001).ConclusionObese adolescents with T2DM have more abnormal lipoprotein profiles than those with normoglycemia or prediabetes. Obese CA adolescents have more abnormal lipids than obese AA adolescents. HbA1c was the characteristic most highly associated with abnormal lipoprotein profiles in our subjects. Our results show that CVD risk markers in obese adolescents vary by race and HbA1c concentration. (Endocr Pract. 2015;21:165-173)  相似文献   

13.
《Endocrine practice》2020,26(4):399-406
Objective: To investigate whether serum bisphenol A (BPA) concentration is related to the occurrence of dyslipidemia.Methods: A total of 574 adults were enrolled at baseline and followed up for 5 years. Concentrations of serum BPA, triglycerides (TGs), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol were measured. Dyslipidemia was defined as the existence of one or more of the following conditions: high-LDL-cholesterolemia (LDL ≥140 mg/dL), hypertriglyceridemia (TGs ≥150 mg/dL), or low-HDL-cholesterolemia (HDL <40 mg/dL). Participants were stratified into tertiles according to low, median, and high baseline serum BPA levels. Multivariable linear and logistic regression models were used. Data from baseline and follow-up were used for cross-sectional and longitudinal analyses, respectively.Results: In the cross-sectional analysis, compared to subjects in the low BPA tertile, those in the high BPA tertile showed a higher level of LDL cholesterol (108.1 ± 24.4 mg/dL versus 119.5 ± 26.9 mg/dL; P<.05) and a lower level of HDL cholesterol (46.2 ± 11.7 mg/dL versus 39.5 ± 7.5 mg/dL; P<.05). In multivariable linear regression models, Z-transformed BPA was positively associated with LDL cholesterol (β= 0.13, P = .002) and negatively associated with HDL cholesterol (β= -0.28; P<.001). After cross-sectionally adjusting for confounders, subjects in higher BPA exposure was associated with a higher prevalence of low-HDL-cholesterolemia. Longitudinally, in subjects without low-HDL-cholesterolemia at baseline, each SD increment in baseline BPA was associated with a higher incidence of low-HDL-cholesterolemia after adjustment for confounders (odds ratio [95% confidence interval; CI] 2.76, 95% CI 1.21, 6.29).Conclusion: Cross-sectionally, higher BPA exposure is associated with a higher prevalence of low-HDL-cholesterolemia. Longitudinally, baseline BPA is an independent predictor of the 5-year incidence of low-HDL-cholesterolemia.Abbreviations: BMI = body mass index; BPA = bisphenol A; CI = confidence interval; CVD = cardiovascular disease; EIMDS = environment, inflammation and metabolic diseases study; HDL = high density lipoprotein; LDL = low density lipoprotein; OR = odds ratio; PPAR = peroxisome proliferator-activated receptor; SBP = systolic blood pressure; TG = triglyceride; Z-BPA = Z-transformed bisphenol A  相似文献   

14.
《Endocrine practice》2015,21(8):927-935
Objective: Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, and overall costs of care in hospitalized patients. At the Stratton VA Medical Center in Albany, New York, a process aimed to improve inpatient glycemic control by remotely assisting primary care teams in the management of hyperglycemia and diabetes was designed.Methods: An electronic query comprised of hospitalized patients with glucose values <70 mg/dL or >350 mg/dL is generated daily. Electronic medical records (EMRs) are individually reviewed by diabetes specialist providers, and management recommendations are sent to primary care teams when applicable. Glucose data was retrospectively examined before and after the establishment of the daily inpatient glycemic survey (DINGS) process, and rates of hyperglycemia and hypoglycemia were compared.Results: Patient-day mean glucose slightly but significantly decreased from 177.6 ± 64.4 to 173.2 ± 59.4 mg/dL (P<.001). The percentage of patient-days with any value >350 mg/dL also decreased from 9.69 to 7.36% (P<.001), while the percentage of patient-days with mean glucose values in the range of 90 to 180 mg/dL increased from 58.1 to 61.4% (P<.001). Glycemic variability, assessed by the SD of glucose, significantly decreased from 53.9 to 49.8 mg/dL (P<.001). Moreover, rates of hypoglycemia (<70 mg/dL) decreased significantly by 41% (P<.001).Conclusion: Quality metrics of inpatient glycemic control improved significantly after the establishment of the DINGS process within our facility. Prospective controlled studies are needed to confirm a causal association.Abbreviations: DINGS = daily inpatient glycemic survey EMR = electronic medical record HbA1c = glycated hemoglobin ICU = intensive care unit VA = Veterans Affairs  相似文献   

15.
《Endocrine practice》2016,22(2):180-189
Objective: To compare the effectiveness of 2 insulin protocols to treat glucocorticoid-induced hyperglycemia in the nonintensive care hospital setting.Methods: A randomized, open-label, parallel-arm study was conducted comparing standard recommended care of complete insulin orders (CIO) (i.e., 3-part insulin regimen of long-acting basal [background], rapid-acting bolus [mealtime], and rapid-acting correction factor) to an experimental group following a regimen of Neutral Protamine Hagedorn (NPH) plus CIO (NPH-CIO). The primary outcome was mean blood glucose (BG), and the secondary outcome was percent of BG in target range of 70 to 180 mg/dL. Hypoglycemia was also evaluated.Results: Sixty-one patients completed 2 to 5 consecutive inpatient days (31 CIO; 30 NPH-CIO). Baseline mean BG results were 237.2 ± 50.2 and 221.9 ± 35.8 mg/dL (P = .30) in the CIO and NPH-CIO groups, respectively. No significant difference in overall mean BG between the 2 groups was detected; however, a significant difference arose on day 3: mean BG 181.8 ± 32.6 mg/dL (CIO) versus 157.2 ± 6.1 mg/dL (NPH-CIO) (P = .03). Moreover, the total daily doses (TDDs) of insulin did not differ: 34.8 ± 43.0 units (CIO) versus 35.8 ± 25.0 units (NPH-CIO) (P = .13). Percent of BG in target was 54.6% (CIO) and 62% (NPH-CIO) (P = .24). Incidence of severe hypoglycemia (<50 mg/dL) was the same in both groups (0.1%).Conclusion: NPH added to 3-part insulin regimen (CIO) may be an effective way to a combat glucocorticoid-induced hyperglycemia, though further research is needed in a larger population.Abbreviations:A1C = hemoglobin A1CBG = blood glucoseCIO = complete insulin ordersDM = diabetes mellitusNPH = neutral protamine HagedornNPH-CIO = neutral protamine Hagedorn plus CIOTDD = total daily dose  相似文献   

16.
《Endocrine practice》2020,26(2):174-178
Objective: Normocalcemic primary hyperparathyroidism (NPHPT) is characterized by elevated parathyroid hormone (PTH) levels with persistently normal calcium levels. The diagnosis of NPHPT assumes the absence of secondary causes of elevated PTH levels. The objective of the current study was to examine levels of free 25-hydroxyvitamin D (25&lsqb;OH]D) in NPHPT subjects and healthy controls.Methods: Ten NPHPT subjects and 20 controls who were age, sex, race, and body mass index (BMI) matched were examined. The diagnosis of NPHPT was made if subjects had (1) a serum calcium level of 8.6 to 10.4 mg/dL, total 25(OH)D 30 to 40 ng/mL, and intact PTH (iPTH) ≥66 pg/mL; and (2) normal renal and liver function. Serum total 25(OH)D levels were measured by radioimmunoassay, and free 25(OH)D levels were determined using an enzyme-linked immunoassay.Results: Mean age of NPHPT subjects was 59.9 ± 5.4 years, and mean BMI was 28.4 ± 2.3 kg/m2, which was not significantly different from the mean age and BMI of the control subjects. Mean total 25(OH)D level was 31.9 ± 1.7 ng/mL in NPHPT subjects and did not differ from that of the controls (32.7 ± 3.3 ng/mL; P = .52). However, mean free 25(OH)D was 5.0 ± 0.9 pg/mL in NPHPT subjects, which was 20% lower compared to the mean of the controls (6.2 ± 1.3 pg/mL; P = .013). Serum iPTH levels were inversely correlated with levels of measured free 25(OH)D (r = -0.42; P<.05) but did not correlate with levels of total 25(OH)D (r = -0.14; P>.10).Conclusion: Measured free 25(OH)D levels are lower in NPHPT subjects than in healthy control subjects. We suggest that some NPHPT subjects may actually have secondary hyperparathyroidism based on their free 25(OH) D levels.Abbreviations: 25(OH)D = 25-hydroxyvitamin D; BMI = body mass index; CV = coefficient of variation; DBP = vitamin D–binding protein; iPTH = intact parathyroid hormone; NPHPT = normocalcemic primary hyperparathyroidism  相似文献   

17.
《Endocrine practice》2010,16(4):617-628
ObjectiveTo assess the effect of the bile acid sequestrant colesevelam hydrochloride in patients with hypercholesterolemia and prediabetes.MethodsIn this 16-week, randomized, double-blind study, adults with untreated prediabetes (2-hour postoral glucose tolerance test [OGTT] glucose ≥ 140 to 199 mg/dL, fasting plasma glucose [FPG] ≥ 110 to 125 mg/ dL, or both), low-density lipoprotein cholesterol (LDL-C) ≥ 100 mg/dL, and triglycerides < 500 mg/dL were randomly assigned to receive colesevelam (3.75 g/d) or placebo. The primary end point was percent change in LDL-C from baseline to week 16 with last observation carried forward. Secondary end points included change in FPG, hemoglobin A1c (A1C), and 2-hour post-OGTT glucose level from baseline to week 16 and attainment of LDL-C and FPG targets.ResultsIn total, 216 patients were randomized (colesevelam, 108; placebo, 108). In comparison with placebo, colesevelam significantly reduced LDL-C (mean treatment difference, -15.6%), non-high-density lipoprotein cholesterol (-9.1%), total cholesterol (-7.2%), apolipoprotein B (-8.1%) (P < .001 for all the foregoing), FPG (median, -2.0 mg/dL; P = .02), and A1C (mean, -0.10%; P = .02). Colesevelam did not significantly change 2-hour post-OGTT glucose (-1.9 mg/dL; P = .75) or high-density lipoprotein cholesterol (-0.5%; P = .80). In addition, colesevelam significantly increased triglyceride levels relative to placebo (median, 14.3%; P < .001). The proportion of patients achieving target levels with colesevelam versus placebo, respectively, was as follows: LDL-C < 100 mg/dL (29% versus 11%; P < .001), A1C < 6.0% (37% versus 25%; P = .05), FPG < 110 mg/dL (48% versus 56%; P = .97), and normalization of glucose (FPG < 100 mg/dL [40% versus 23%; P = .06]). Colesevelam had a weight-neutral effect and was well tolerated.ConclusionColesevelam is an option for managing the lipid profile and normalizing glucose levels in patients with hypercholesterolemia and prediabetes. Further study is warranted to determine whether colesevelam slows or prevents progression of prediabetes to type 2 diabetes. (Endocr Pract. 2010;16:617-628)  相似文献   

18.
《Endocrine practice》2014,20(11):1187-1197
ObjectiveTo analyze changes in plasma glucose, insulin, and glucagon in relation to glycemic response during treatment with dual add-on of saxagliptin (SAXA) plus dapagliflozin (DAPA) to metformin XR (MET) compared with SAXA add-on or DAPA add-on alone to MET in patients with type 2 diabetes mellitus (T2DM) poorly controlled with MET.MethodsDouble-blind trial in adults with glycated hemoglobin (HbAlc) ≥ 8.0 to ≤ 12.0% randomized to SAXA 5 mg/day plus DAPA 10 mg/day (n = 179), or SAXA 5 mg/day and placebo (n = 176), or DAPA 10 mg/day and placebo (n = 179) added to background MET ≥ 1,500 mg/ day. The mean change from baseline in the area under the curve from 0 to 180 minutes (AUC0-180 min) was calculated for glucose, insulin, and glucagon obtained during a liquid meal tolerance test (MTT).ResultsGlucose AUC0-180 min an was reduced more from baseline with SAXA + DAPA + MET (-12,940 mg/dL) compared with SAXA + MET (-6,309 mg/dL) and DAPA + MET (-11,247 mg/dL). Insulin AUC0-180 min significantly decreased with SAXA + DAPA + MET (-1,120 μU/mL) and DAPA + MET (-1,019 μU/mL) and increased with SAXA + MET (661 μU/mL). Glucagon AUC0-180 min only increased with DAPA + MET (2,346 pg/mL). The changes in glucose (P < .0001) and insulin (P = .0003) AUC0-180 min correlated with change in HbA1c, whereas the change in glucagon AUC0-180 min min did not (P = .27).ConclusionsWhen added to background MET, the combination of SAXA + DAPA provided additional reductions in glucose AUC0-180 min and HbA1c without the increase in insulin seen with SAXA and without the increase in glucagon seen with DAPA. Changes in insulin and glucose but not glucagon AUC0-180 min correlated with change in HbA1c. (Endocr Pract. 2014;20:1187-1197)  相似文献   

19.
《Endocrine practice》2014,20(12):1303-1308
ObjectiveAlthough the importance of glycemic control is well established for patients with diabetes hospitalized for surgical problems, it has not been supported by clinical studies for patients with diabetes hospitalized on the medical floors.MethodsWe conducted a retrospective study of 378 patients with type 2 diabetes admitted for cardiac or infectious disease (ID) diagnosis between September 1, 2011, and August 1, 2012. Exclusion criteria included type 1 diabetes, admission to the intensive care unit (ICU), hospital stay shorter than 3 days, and daily glucocorticoid dose > 20 mg of methylprednisolone. The primary composite outcome included death during hospitalization, ICU transfer, initiation of enteral or parenteral nutrition, line infection, deep vein thrombosis, pulmonary embolism, rise in plasma creatinine by 1 or > 2 mg/dL, new infection, an infection lasting for more than 20 days, and readmission within 30 days and between 1 and 10 months after discharge.ResultsPatients were stratified by mean blood glucose (BG) level: group 1 had mean BG of < 180 mg/dL (n = 286; mean BG, 142 ± 23 mg/dL), whereas group 2 had mean BG levels > 181 mg/dL (n = 92; mean BG, 218 ± 34 mg/dL; P < .0001). Group 2 had a 46% higher occurrence of the primary outcome (P < .0004). The rate of unfavorable events was greater in cardiac and ID patients with worse glycemic control (group 2).ConclusionOur data strongly support a positive influence of better glycemic control (average glycemia < 180 mg/dL or 10 mmol/L) on outcomes of hospitaliza-tion in patients with type 2 diabetes. (Endocr Pract. 2014; 20:1303-1308)  相似文献   

20.
《Endocrine practice》2009,15(3):220-224
ObjectiveTo assess the risk of concomitant adrenal sufficiency in 2 patients with Graves thyrotoxicosis.MethodsWe present the clinical course and laboratory findings of 2 patients with hyperthyroidism associated with low basal serum cortisol and briefly review the literature with regard to possible mechanisms of hypocortisolemia in thyrotoxic states.ResultsTwo women aged 37 and 43 years with longstanding Graves disease presented with hyperthyroidism secondary to nonadherence to prescribed antithyroid medications. Both women also had symptoms suggestive of adrenal insufficiency including nausea, vomiting, and diffuse abdominal pain in Patient 1 and fatigue and hypotension in Patient 2. In both patients, physical examination findings were consistent with hyperthyroidism. Laboratory results of Patient 1 included the following: thyrotropin, < 0.002 mIU/L; free thyroxine, > 6 μg/dL; and total triiodothyronine, 539 ng/dL. Laboratory results of Patient 2 included the following: thyrotropin, < 0.002 mIU/L; free thyroxine, > 6 μg/dL; and total triiodothyronine, 539 ng/dL. Morning basal cortisol levels were 0.9 μg/dL in Patient 1 and 0.6 pg/dL in Patient 2. Because of the low basal serum cortisol levels, the patients underwent a high-dose (250 mcg) cosyntropin-stimulation test; however, both patients had adequate cortisol response. At 60 minutes, serum cortisol concentration was 31.4 μg/dL in Patient 1 and 25.5 pg/dL in Patient 2. After adequately treating the hyperthyroidism, basal cortisol levels in both patients returned to the reference range.ConclusionSymptomatic hypocortisolemia may be present in severe hyperthyroidism, and it resolves with adequate treatment of the hyperthyroidism. (Endocr Pract. 2009;15:220-224)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号