首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Some environmental insults, such as fine particulate matter (PM) exposure, significantly impair the function of stem cells. However, it is unknown if PM exposure could affect the population of bone marrow stem cells (BMSCs). The present study was to investigate the effects of PM on BMSCs population and related mechanism(s).

Main Metheods

PM was intranasally distilled into male C57BL/6 mice for one month. Flow cytometry with antibodies for BMSCs, Annexin V and BrdU ware used to determine the number of BMSCs and the levels of their apoptosis and proliferation in vivo. Phosphorylated Akt (P-Akt) level was determined in the BM cells with western blotting. Intracellular reactive oxygen species (ROS) formation was quantified using flow cytometry analysis. To determine the role of PM-induced ROS in BMSCs population, proliferation, and apotosis, experiments were repeated using N-acetylcysteine (NAC)-treated wild type mice or a triple transgenic mouse line with overexpression of antioxidant network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase-1 with decreased in vivo ROS production.

Key Findings

PM treatment significantly reduced BMSCs population in association with increased ROS formation, decreased P-Akt level, and inhibition of proliferation of BMSCs without induction of apoptosis. NAC treatment or AON overexpression with reduced ROS formation effectively prevented PM-induced reduction of BMSCs population and proliferation with partial recovery of P-Akt level.

Significance

PM exposure significantly decreased the population of BMSCs due to diminished proliferation via ROS-mediated mechanism (could be partially via inhibition of Akt signaling).  相似文献   

2.

Background

Erythropoietin (EPO), a hematopoietic cytokine, enhances neurogenesis and angiogenesis during stroke recovery. In the present study, we examined the effect of EPO on oligodendrogenesis in a rat model of embolic focal cerebral ischemia.

Methodology and Principal Findings

Recombinant human EPO (rhEPO) at a dose of 5,000 U/kg (n = 18) or saline (n = 18) was intraperitoneally administered daily for 7 days starting 24 h after stroke onset. Treatment with rhEPO augmented actively proliferating oligodendrocyte progenitor cells (OPCs) measured by NG2 immunoreactive cells within the peri-infarct white matter and the subventricular zone (SVZ), but did not protect against loss of myelinating oligodendrocytes measured by cyclic nucleotide phosphodiesterase (CNPase) positive cells 7 days after stroke. However, 28 and 42 days after stroke, treatment with rhEPO significantly increased myelinating oligodendrocytes and myelinated axons within the peri-infarct white matter. Using lentivirus to label subventricular zone (SVZ) neural progenitor cells, we found that in addition to the OPCs generated in the peri-infarct white matter, SVZ neural progenitor cells contributed to rhEPO-increased OPCs in the peri-infarct area. Using bromodeoxyuridine (BrdU) for birth-dating cells, we demonstrated that myelinating oligodendrocytes observed 28 days after stroke were derived from OPCs. Furthermore, rhEPO significantly improved neurological outcome 6 weeks after stroke. In vitro, rhEPO increased differentiation of adult SVZ neural progenitor cells into oligodendrocytes and enhanced immature oligodendrocyte cell proliferation.

Conclusions

Our in vivo and in vitro data indicate that EPO amplifies stroke-induced oligodendrogenesis that could facilitate axonal re-myelination and lead to functional recovery after stroke.  相似文献   

3.

Background

The human Torque Teno virus (TTV) causes persistent viremia in most immunocompetent individuals. Elevated TTV levels are observed after solid organ transplantation and are related to the extent of immunosuppression especially during the phase of maintenance immunosuppression. However, the extent to which the TTV increase in the early phase post-transplantation is associated with the patient’s immunosuppressive state is unclear.

Objectives

In this study, we assessed the TTV increase dynamics in detail during the first three months after lung transplantation under a defined immunosuppressive regimen and in relation to the pre-transplant TTV level.

Study Design

Forty-six lung transplant recipients (LTRs) were included in this prospective longitudinal study. All received alemtuzumab induction combined with tacrolimus and corticosteroids immunosuppressive therapy. Plasma TTV DNA was monitored before transplantation and regularly within the first three months post-transplantation (n = 320 samples; mean sampling interval: 12.2 days).

Results

In 43/46 LTRs (93%), TTV DNA was detectable before transplantation (median 4.4 log10 copies/mL; range: 2.0–6.4). All 46 LTRs showed a TTV increase post-transplantation, which followed a sigmoidal-shaped curve before the median peak level of 9.4 log10 copies/mL (range: 7.6–10.7) was reached at a median of day 67 (range: 41–92). The individual TTV DNA doubling times (range: 1.4–20.1 days) significantly correlated with the pre-transplant TTV levels calculated over 30 or 60 days post-transplantation (r = 0.61, 0.54, respectively; both P < 0.001), but did not correlate with the mean tacrolimus blood levels. Pre-transplant TTV levels were not associated with time and level of the patients’ post-transplant TTV peak load.

Conclusion

The TTV level may be used to mirror the state of immunosuppression only after the patients’ initial peak TTV level is reached.  相似文献   

4.

Aims

Cultured cardiac explants produce a heterogeneous population of cells including a distinctive population of refractile cells described here as small round cardiac explant derived cells (EDCs). The aim of this study was to explore the source, morphology and cardiogenic potential of EDCs.

Methods

Transgenic MLC2v-Cre/ZEG, and actin-eGFP mice were used for lineage-tracing of EDCs in vitro and in vivo. C57B16 mice were used as cell transplant recipients of EDCs from transgenic hearts, as well as for the general characterisation of EDCs. The activation of cardiac-specific markers were analysed by: immunohistochemistry with bright field and immunofluorescent microscopy, electron microscopy, PCR and RT-PCR. Functional engraftment of transplanted cells was further investigated with calcium transient studies.

Results

Production of EDCs was highly dependent on the retention of blood-derived cells or factors in the cultured explants. These cells shared some characteristics of cardiac myocytes in vitro and survived engraftment in the adult heart in vivo. However, EDCs failed to differentiate into functional cardiac myocytes in vivo as demonstrated by the absence of stimulation-evoked intracellular calcium transients following transplantation into the peri-infarct zone.

Conclusions

This study highlights that positive identification based upon one parameter alone such as morphology or immunofluorescene is not adequate to identify the source, fate and function of adult cardiac explant derived cells.  相似文献   

5.

Objectives

Recent findings suggest that in response to repair-to-injury bone marrow mesenchymal stem cells (BMSCs) participate in the process of angiogenesis. It is unclear what role BMSCs play in the structure of the vessel wall. In present study, we aimed to determine whether BMSCs had the capacity of endothelial cells (ECs).

Methods

BMSCs were separated and cultured. FACS and RT-PCR analysis confirmed the gene expression phenotype. The capacity of migration and adhesion and the ultrastructure of BMSCs were examined. The effect of BMSCs transplantation on the vascular repair was investigated in a murine carotid artery-injured model.

Results

BMSCs could express some markers and form the tube-like structure. The migration and adhesion capacity of BMSCs increased significantly after stimulated. In addition, BMSCs had the intact cell junction. In vivo the local transfer of BMSCs differentiated into neo-endothelial cells in the injury model for carotid artery and contributed to the vascular remodeling.

Conclusion

These results showed that BMSCs could contribute to neointimal formation for vascular lesion and might be associated with the differentiation into ECs, which indicated the important therapeutic implications for vascular diseases.  相似文献   

6.

Background

Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation.

Methodology/Principal Findings

NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs) and transplanted into rats whose optic nerves have been crushed (ONC). hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1′ -dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM). The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers.

Conclusions/Significance

The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.  相似文献   

7.

Background

The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations.

Methods

hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 106 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.

Results

The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.

Conclusions

IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.  相似文献   

8.

Objective and Methods

This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo.

Results

Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord.

Conclusion

Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes) will provide additional insight into therapeutic potential of such cells.  相似文献   

9.

Importance

Acute ischemic stroke is a leading cause of death and disability worldwide. Several recent clinical trials have shown that endovascular treatment improves clinical outcomes among patients with acute ischemic stroke.

Objective

To provide an overall and precise estimate of the efficacy of endovascular treatment predominantly using second-generation mechanical thrombectomy devices (stent-retriever devices) compared to medical management on clinical and functional outcomes among patients with acute ischemic stroke.

Data Sources

MEDLINE, EMBASE, Cochrane Collaboration Central Register of Controlled Clinical Trials, Web of Science, and NIH ClinicalTrials.gov were searched through November 2015.

Study Selection

Searches returned 3,045 articles. After removal of duplicates, two authors independently screened titles and abstracts to assess eligibility of 2,495 potentially relevant publications. From these, 38 full-text publications were more closely assessed. Finally, 5 randomized controlled trials of endovascular treatment with predominant use of retrievable stents were selected.

Data Extraction and Synthesis

Three authors independently extracted information on participant and trial characteristics and clinical events using a standardized protocol. Random effects models were used to pool endovascular treatment effects across outcomes.

Main Outcomes and Measures

The primary outcome was better functional outcome as measured on the modified Rankin Scale at 90 days of follow-up. Secondary outcomes included all-cause mortality and symptomatic intra-cerebral hemorrhage.

Results

Five trials representing 1,287 patients were included. Overall, patients randomized to endovascular therapy experienced 2.22 times greater odds of better functional outcome compared to those randomized to medical management (95% CI, 1.66 to 2.98; P < 0.0001). Endovascular therapy was not associated with mortality [OR (95% CI), 0.78 (0.54, 1.12); P = 0.1056] or symptomatic intracerebral hemorrhage [OR (95% CI), 1.19 (0.69, 2.05); P = 0.5348]. Meta-regression analysis suggested that shorter times from stroke onset to groin puncture and from stroke onset to reperfusion result in better functional outcomes in ischemic stroke patients (P = 0.0077 and P = 0.0089). There were no significant differences in the beneficial effects of endovascular treatment on functional outcomes across categories of gender, age, stroke severity, ischemic changes on computed tomography, or intravenous tissue plasminogen activator administration.

Conclusions and Relevance

This meta-analysis demonstrated superior functional outcomes in subjects receiving endovascular treatment compared to medical management. Further, this analysis showed that acute ischemic stroke patients may receive enhanced functional benefit from earlier endovascular treatment.  相似文献   

10.

Introduction

Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART).

Methods

Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR.

Results

The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase(SHP)-1 and a reduced expression of positive regulators like Janus kinase(JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells.

Conclusions

Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs further investigation. The information may be useful in design of novel therapeutic targets for better management of disease.  相似文献   

11.

Background

Little is known about the effects of induced pluripotent stem cell (iPSC) treatment on acute cerebral inflammation and injuries after intracerebral hemorrhage (ICH), though they have shown promising therapeutic potentials in ischemic stoke.

Methods

An ICH model was established by stereotactic injection of collagenase VII into the left striatum of male Sprague-Dawley (SD) rats. Six hours later, ICH rats were randomly divided into two groups and received intracerebrally 10 μl of PBS with or without 1×106 of iPSCs. Subsequently, neural function of all ICH rats was assessed at days 1, 3, 7, 14, 28 and 42 after ICH. Inflammatory cells, cytokines and neural apoptosis in the rats’ perihematomal regions, and brain water content were determined on day 2 or 3 post ICH. iPSC differentiation was determined on day 28 post ICH. Nissl+ cells and glial fibrillary acidic protein (GFAP)+ cells in the perihematoma and the survival rates of rats in two groups were determined on post-ICH day 42.

Results

Compared with control animals, iPSCs treatment not only improved neurological function and survival rate, but also resulted in fewer intracephalic infiltrations of neutrophils and microglia, along with decreased interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α), and increased IL-10 in the perihematomal tissues of ICH rats. Furthermore, brain oedema formation, apoptosis, injured neurons and glial scar formation were decreased in iPSCs-transplanted rats.

Conclusions

Our findings indicate that iPSCs transplantation attenuate cerebral inflammatory reactions and neural injuries after ICH, and suggests that multiple mechanisms including inflammation modulation, neuroprotection and functional recovery might be involved simultaneously in the therapeutic benefit of iPSC treatment against hemorrhagic stroke.  相似文献   

12.

Objective

To explore the healthcare resource utilization, psychotropic drug use and mortality of older people with dementia.

Design

A nationwide propensity score-matched cohort study.

Setting

National Health Insurance Research database.

Participants

A total of 32,649 elderly people with dementia and their propensity-score matched controls (n=32,649).

Measurements

Outpatient visits, inpatient care, psychotropic drug use, in-hospital mortality and all-cause mortality at 90 and 365 days.

Results

Compared to the non-dementia group, a higher proportion of patients with dementia used inpatient services (1 year after index date: 20.91% vs. 9.55%), and the dementia group had more outpatient visits (median [standard deviation]: 7.00 [8.87] vs. 3.00 [8.30]). Furthermore, dementia cases with acute admission had the highest psychotropic drug utilization both at baseline and at the post-index dates (difference-in-differences: all <0.001). Dementia was associated with an increased risk of all-cause mortality (90 days, Odds ratio (OR)=1.85 [95%CI 1.67-2.05], p<0.001; 365 days, OR=1.59 [1.50-1.69], p<0.001) and in-hospital mortality (90 days, OR=1.97 [1.71-2.27], p<0.001; 365 days, OR=1.82 [1.61-2.05], p<0.001) compared to matched controls.

Conclusions

When older people with dementia are admitted for acute illnesses, they may increase their use of psychotropic agents and their risk of death, particularly in-hospital mortality.  相似文献   

13.

Background

Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.

Aim

To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury.

Methods

Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.

Results

Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.

Conclusions

CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.  相似文献   

14.

Aims

To isolate and characterise phage which could lyse P. acnes and to formulate the phage into a delivery form for potential application in topical treatment of acne infection.

Methods and Results

Using standard phage isolation techniques, ten phage capable of lysing P. acnes were isolated from human skin microflora. Their genomes showed high homology to previously reported P. acnes phage. These phage were formulated into cetomacrogol cream aqueous at a concentration of 2.5x108 PFU per gram, and shown to lyse underlying P. acnes cells grown as lawn cultures. These phage formulations remained active for at least 90 days when stored at four degrees Celsius in a light protected container.

Conclusions

P. acnes phage formulated into cetomacrogol cream aqueous will lyse surrounding and underlying P. acnes bacteria, and are effective for at least 90 days if stored appropriately.

Significance and Impact of the Study

There are few reports of phage formulation into semi solid preparations for application as phage therapy. The formulation method described here could potentially be applied topically to treat human acne infections. The potential exists for this model to be extended to other phage applied to treat other bacterial skin infections.  相似文献   

15.

Purpose

The differentiated superficial cells of the urothelium restrict urine flow into the bladder wall. We have demonstrated that urothelial cells isolated from bladders of patients with interstitial cystitis/painful bladder syndrome (IC/PBS) fail to release PGE2 in response to tryptase. This study examines the expression of PGE2 synthesis and degradation enzymes in urothelial cells during differentiation.

Materials and Methods

We measured immunoprotein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 synthase (PGES) and 15-hydroxyprostaglandin dehydrogenase (PGDH) in human urothelial cells and in immortalized urothelial cells isolated from the bladders of IC/PBS patients or normal subjects during stratification and differentiation produced by increased calcium and fetal bovine serum (Ca/FBS) in the culture medium for 1, 3 and 7 days.

Results

PGES immunoprotein expression increased during differentiation in normal and IC/PBS urothelial cells. COX-2 expression also increased in cells from normal patients following differentiation. Remarkably, no COX-2 expression was detectable in urothelial cells isolated from 3 out of 4 IC/PBS patients. PGDH immunoprotein expression decreased in normal cells after 1 and 3 days of Ca/FBS addition, but returned to normal after 7 days. PGDH expression was unchanged during differentiation at 1 and 3 days, but was more than 2-fold higher at 7 days compared to day 0 in the IC/PBS cells. Urothelial cells isolated from IC/PBS patients demonstrated no PGE2 release in response to tryptase under any of the experimental conditions studied.

Conclusions

Taken together, our results indicate that PGE2 release is compromised during stratification and differentiation in IC/PBS urothelium and may contribute to impaired barrier function.  相似文献   

16.

Background

Dystroglycan has recently been characterised in blood tissue cells, as part of the dystrophin glycoprotein complex involved in the differentiation process of neutrophils.

Purpose

In the present study we have investigated the role of dystroglycan in the human promyelocytic leukemic cell line Kasumi-1 differentiated to macrophage-like cells.

Methods

We characterised the pattern expression and subcellular distribution of dystroglycans in non-differentiated and differentiated Kasumi-1 cells.

Results

Our results demonstrated by WB and flow cytometer assays that during the differentiation process to macrophages, dystroglycans were down-regulated; these results were confirmed with qRT-PCR assays. Additionally, depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated Kasumi-1 cells, including morphology, migration and phagocytic activities although secretion of IL-1β and expression of markers of differentiation are not altered.

Conclusion

Our findings strongly implicate dystroglycan as a key membrane adhesion protein involved in actin-based structures during the differentiation process in Kasumi-1 cells.  相似文献   

17.

Background

A fetal inflammatory response (FIR) in sheep can be induced by intraamniotic or selective exposure of the fetal lung or gut to lipopolysaccharide (LPS). The oral, nasal, and pharyngeal cavities (ONP) contain lymphoid tissue and epithelium that are in contact with the amniotic fluid. The ability of the ONP epithelium and lymphoid tissue to initiate a FIR is unknown.

Objective

To determine if FIR occurs after selective ONP exposure to LPS in fetal sheep.

Methods

Using fetal recovery surgery, we isolated ONP from the fetal lung, GI tract, and amniotic fluid by tracheal and esophageal ligation and with an occlusive glove fitted over the snout. LPS (5 mg) or saline was infused with 24 h Alzet pumps secured in the oral cavity (n = 7–8/group). Animals were delivered 1 or 6 days after initiation of the LPS or saline infusions.

Results

The ONP exposure to LPS had time-dependent systemic inflammatory effects with changes in WBC in cord blood, an increase in posterior mediastinal lymph node weight at 6 days, and pro-inflammatory mRNA responses in the fetal plasma, lung, and liver. Compared to controls, the expression of surfactant protein A mRNA increased 1 and 6 days after ONP exposure to LPS.

Conclusion

ONP exposure to LPS alone can induce a mild FIR with time-dependent inflammatory responses in remote fetal tissues not directly exposed to LPS.  相似文献   

18.

Introduction

Serious bacterial infections continue to be an important cause of death and illness among infants in developing countries. Time to recovery could be considered a surrogate marker of severity of the infection. We therefore aimed to identify clinical and laboratory predictors of time to recovery in infants with probable serious bacterial infection (PSBI).

Methods

We used the dataset of 700 infants (7-120 days) enrolled in a randomised controlled trial in India in which 10mg of oral zinc or placebo was given to infants with PSBI. PSBI was defined as signs/symptoms of possible serious bacterial infection along with baseline C-reactive protein(CRP) level >12mg/L. Time to recovery was defined as time from enrolment to the end of a 2-day period with no symptoms/signs of PSBI and daily weight gain of at least 10g over 2 succesive days on exclusive oral feeding. Cox proportional hazard regression was used to measure the associations between relevant variables and time to recovery.

Results

Infants who were formula fed prior to illness episode had 33% longer time to recovery (HR-0.67, 95%CI-0.52, 0.87) than those who were not. Being underweight (HR-0.84, 95%CI-0.70, 0.99), lethargic (HR-0.77, 95%CI-0.62, 0.96) and irritable (HR-0.81, 95%CI-0.66, 0.99) were independent predictors of time to recovery. Baseline CRP was significantly associated with time to recovery (P<0.001), higher CRP was associated with longer time to recovery and this association was nearly linear.

Conclusion

Simple clinical and laboratory parameters such as formula feeding prior to the illness, being underweight, lethargic, irritable and having elevated CRP levels could be used for early identification of infants with PSBI at risk for protracted illness and could guide prompt referral to higher centers in resource limited settings. This also provides prognostic information to clinicians and family as longer recovery time has economic and social implications on the family in our setting.

Trial Registration

ClinicalTrials.gov NCT00347386  相似文献   

19.
PP Wang  DY Xie  XJ Liang  L Peng  GL Zhang  YN Ye  C Xie  ZL Gao 《PloS one》2012,7(8):e43408

Aims

Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.

Methods

We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.

Results

BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.

Conclusion

BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.  相似文献   

20.

Purpose

To investigate the safety and efficacy of subretinal injection of human Wharton’s Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.

Methods

RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8) and placebo control group (n = 8). In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT). Retinal function was assessed by electroretinography (ERG) 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies.

Results

No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL) in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells.

Conclusions

Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号