首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

2.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Δ); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.The Cdc7 protein kinase is required throughout the yeast S phase to activate origins (1, 2). The S phase cyclin-dependent kinase also activates yeast origins of replication (35). It has been proposed that Dbf4 activates Cdc7 kinase in S phase, and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6). However, it is not known how Dbf4-Cdc7 (DDK)2 acts during S phase to trigger the initiation of DNA replication. DDK has homologs in other eukaryotic species, and the role of Cdc7 in activation of replication origins during S phase may be conserved (710).The Mcm2-7 complex functions with Cdc45 and GINS to unwind DNA at a replication fork (1115). A mutation of MCM5 (mcm5-bob1) bypasses the cellular requirements for DBF4 and CDC7 (16), suggesting a critical physiologic interaction between Dbf4-Cdc7 and Mcm proteins. DDK phosphorylates Mcm2 in vitro with proteins purified from budding yeast (17, 18) or human cells (19). Furthermore, there are mutants of MCM2 that show synthetic lethality with DBF4 mutants (6, 17), suggesting a biologically relevant interaction between DBF4 and MCM2. Nevertheless, the physiologic role of DDK phosphorylation of Mcm2 is a matter of dispute. In human cells, replacement of MCM2 DDK-phosphoacceptor residues with alanines inhibits DNA replication, suggesting that Dbf4-Cdc7 phosphorylation of Mcm2 in humans is important for DNA replication (20). In contrast, mutation of putative DDK phosphorylation sites at the N terminus of Schizosaccharomyces pombe Mcm2 results in viable cells, suggesting that phosphorylation of S. pombe Mcm2 by DDK is not critical for cell growth (10).In budding yeast, Cdc7 is present at high levels in G1 and S phase, whereas Dbf4 levels peak in S phase (18, 21, 22). Furthermore, budding yeast DDK binds to chromatin during S phase (6), and it has been shown that Dbf4 is required for Cdc7 binding to chromatin in budding yeast (23, 24), fission yeast (25), and Xenopus (9). Human and fission yeast Cdc7 are inert on their own (7, 8), but Dbf4-Cdc7 is active in phosphorylating Mcm proteins in budding yeast (6, 26), fission yeast (7), and human (8, 10). Based on these data, it has been proposed that Dbf4 activates Cdc7 kinase in S phase and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6, 9, 18, 2124). However, a mechanistic analysis of how Dbf4 activates Cdc7 has not yet been accomplished. For example, the multimeric state of the active Dbf4-Cdc7 complex is currently disputed. A heterodimer of fission yeast Cdc7 (Hsk1) in complex with fission yeast Dbf4 (Dfp1) can phosphorylate Mcm2 (7). However, in budding yeast, oligomers of Cdc7 exist in the cell (27), and Dbf4-Cdc7 exists as oligomers of 180 and 300 kDa (27).DDK phosphorylates the N termini of human Mcm2 (19, 20, 28), human Mcm4 (10), budding yeast Mcm4 (26), and fission yeast Mcm6 (10). Although the sequences of the Mcm N termini are poorly conserved, the DDK sites identified in each study have neighboring acidic residues. The residues of budding yeast Mcm2 that are phosphorylated by DDK have not yet been identified.In this study, we find that budding yeast Cdc7 is weakly active as a multimer in phosphorylating Mcm2. However, a low molecular weight form of Dbf4-Cdc7, likely a heterodimer, has a higher specific activity for phosphorylation of Mcm2. Dbf4 or DDK, but not Cdc7, binds tightly to Mcm2, suggesting that Dbf4 recruits Cdc7 to Mcm2. DDK phosphorylates two serine residues of Mcm2, Ser-164 and Ser-170, in an acidic region of the protein. Mutation of Ser-170 is lethal to yeast cells, but this phenotype is rescued by the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Ser-170 of Mcm2 is required for budding yeast growth.  相似文献   

3.
4.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

5.
6.
In Archaea, an hexameric ATPase complex termed PAN promotes proteins unfolding and translocation into the 20 S proteasome. PAN is highly homologous to the six ATPases of the eukaryotic 19 S proteasome regulatory complex. Thus, insight into the mechanism of PAN function may reveal a general mode of action mutual to the eukaryotic 19 S proteasome regulatory complex. In this study we generated a three-dimensional model of PAN from tomographic reconstruction of negatively stained particles. Surprisingly, this reconstruction indicated that the hexameric complex assumes a two-ring structure enclosing a large cavity. Assessment of distinct three-dimensional functional states of PAN in the presence of adenosine 5′-O-(thiotriphosphate) and ADP and in the absence of nucleotides outlined a possible mechanism linking nucleotide binding and hydrolysis to substrate recognition, unfolding, and translocation. A novel feature of the ATPase complex revealed in this study is a gate controlling the “exit port” of the regulatory complex and, presumably, translocation into the 20 S proteasome. Based on our structural and biochemical findings, we propose a possible model in which substrate binding and unfolding are linked to structural transitions driven by nucleotide binding and hydrolysis, whereas translocation into the proteasome only depends upon the presence of an unfolded substrate and binding but not hydrolysis of nucleotide.In eukaryotic cells most protein breakdown in the cytosol and nucleus is catalyzed by the 26 S proteasome. This ∼2.5-MDa (1) complex degrades ubiquitin-conjugated and certain non-ubiquitinated proteins in an ATP-dependent manner (2, 3). The 26 S complex is composed of one or two 19 S regulatory particles situated at the ends of the cylindrical 20 S proteasome. Within the 26 S complex, proteins are hydrolyzed in the 20 S proteasome. Tagged substrates, however, first bind to the 19 S regulatory particle, which catalyzes their unfolding and translocation into the 20 S subcomplex (4, 5). The 19 S regulatory particle consists of at least 17 different subunits (1, 6). Nine of these subunits form a “lid,” whereas the other eight subunits, including six ATPases, comprise the base of the 19 S particle. Electron microscopy (710) as well as cross-linking experiments (11, 12) have demonstrated that the six homologous ATPases are associated with the α rings of the 20 S particle.Unlike eukaryotes, Archaea and certain eubacteria contain homologous 20 S particles but lack ubiquitin. Their proteasomes degrade proteins in association with a hexameric ATPase ring complex termed PAN (13). PAN appears to be the evolutionary precursor of the 19 S base, predating the coupling of ubiquitination and proteolysis in eukaryotes (14). In addition, PAN recognizes the bacterial targeting sequence ssrA (in analogy to the polyubiquitin conjugates in eukaryotes) and efficiently unfolds and translocates globular substrates, like green fluorescent protein, when tagged with ssrA (15). In both PAN and the 19 S proteasome regulatory complexes, ATP is essential for substrate unfolding and translocation and for opening of the gated channel in the α ring through which substrates enter the 20 S particle (1517). Because this portal is quite narrow (1820), only extended polypeptides can enter the 20 S proteasome. Consequently, a globular substrate must be unfolded by the associated ATPase complex to be translocated and digested within the 20 S particle.PAN and the six ATPases found at the base of the 19 S particle are members of the AAA+ superfamily of multimeric ATPases which also includes the ATP-dependent proteases Lon and FtsH and the regulatory components of the bacterial ATP-dependent proteases ClpAP, ClpXP, and HslUV (8, 21). For mechanistic studies of the roles of ATP, the simpler archaeal PAN-20 S system offers many technical advantages over the much more complex 26 S proteasome. For example, prior studies of PAN (17, 22) demonstrated that unfolding of globular substrates (e.g. green fluorescent protein-ssrA) requires ATP hydrolysis. The same was also shown for the Escherichia coli ATP-dependent proteases ClpXP (23) and ClpAP (24). We have also shown that unfolding by PAN can take place on the surface of the ATPase ring in the absence of translocation (15). Thus, unfolding seems to proceed independently from protein translocation into the 20 S proteolytic particle. It is noteworthy that other studies suggest that proteins are unfolded by energy-dependent translocation through the ATPase ring (25, 26). These studies have suggested that the translocation of an unfolded polypeptide from the ATPase into the 20 S core is an active process that is coupled to ATP hydrolysis. A key to underline a detailed molecular mechanism for substrate binding, unfolding, and translocation by the proteasome regulatory ATPase complex is improved understanding of its architecture and the nucleotide-dependent structural transitions that afford these functions.To date we and others have failed to generate micrographs suitable for three-dimensional reconstruction of PAN using single-particle EM analysis. Likewise, structural information regarding the three-dimensional architecture and subunit organization within the 19 S particle is very limited. In fact, high resolution three-dimensional information on the 19 S complex is not yet available. Most knowledge available is based on cross-linking experiments (11, 12) as well as EM structural analysis (710), which provided a three-dimensional model outline of the general architecture of the 26 S complex. Unlike the 19 S complex, the structure of the 20 S subcomplex was determined by x-ray crystallography (18, 19). In contrast to the highly homogenous structure of the 20 S complex, the structural heterogeneity and flexibility of the 19 S subcomplex is presumably reflected in multiple conformations, which in turn also contribute to the difficulty in generating a high resolution three-dimensional structural model of the 26 S proteasome. Accordingly, the initial goal of this study was to generate a three-dimensional model of PAN that will allow us to determine its general architecture and to correlate unique conformational transitions within this ATPase with the nucleotide state of the complex (i.e. in the presence of ATPγS, ADP, or in the absence of nucleotides).Smith et al. (27) suggested a general architecture for the PAN-20 S complex based on two-dimensional averaging of a Thermoplasma acidophilum (TA)3 20 S proteasome and Methanococcus jannaschii (MJ) PAN hybrid complex in the presence of ATPγS. Based on side-view projections of that complex, these authors proposed that PAN assumes an overall structure similar to E. coli HslU (2830).We realized that although PAN appears heterogeneous in electron micrographs, it does not occupy all possible orientations when adsorbed to carbon-coated electron microscopy (EM) grids, a prerequisite for single particle analysis. This problem was overcome by applying electron tomography in conjunction with a three-dimensional averaging procedure that accounts for the missing wedge in the Fourier space of electron tomograms (31, 32). The three-dimensional model generated revealed an unexpected architecture leading to a possible molecular mechanism describing the function of PAN and presumably the 19 S ATPases.  相似文献   

7.
Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world''s major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and facilitate the comparative screening of antigens as blood-stage vaccine candidates.Parasites of the Plasmodium genus are the etiological agents responsible for malaria, an infectious disease mostly occurring in developing countries with up to 40% of the world''s population described as being at risk of the disease. Among the Plasmodium species that can affect humans, Plasmodium falciparum is responsible for the highest mortality, causing around one million deaths annually, mostly in children under the age of five (1). The clinical symptoms of malaria occur during the cyclic asexual blood stage of the parasite lifecycle when merozoites, that have invaded and replicated within host erythrocytes, are released into the bloodstream before invading new red blood cells (2). Despite intensive efforts from the research community there is currently no licensed vaccine for malaria. The leading candidate RTS,S/AS01, which targets the pre-erythrocytic stage of the disease and was tested in phase III trials, conferred 30 to 50% protection from clinical malaria, depending on the age group studied (3, 4). This limited efficacy has led to calls for a more effective vaccine and many have suggested that a combinatorial vaccine that additionally targets the blood stage may increase efficacy.A vaccine targeting the proteins expressed on the surface of the blood stage of the parasite is conceptually attractive because merozoites are repeatedly and directly exposed to the human humoral immune system and naturally acquired antibodies against these proteins have been shown to confer at least partial immunity (58). Despite this, only a few antigens discovered before the completion of the parasite genome sequence have been assessed in detail (9) and clinical vaccine trials using antigens that target the blood stage have so far shown limited efficacy, mostly caused by antigenic diversity (10). The sequencing of the parasite genome (11) has identified all possible targets but the systematic screening of these new candidates to assess their potential as a vaccine is hampered by the inability to systematically express recombinant Plasmodium proteins in their native conformation (1215). Likely explanations might be the high (∼80%) A:T content of the P. falciparum genome resulting in low codon usage compatibility in heterologous expression systems, the large size (> 50 kDa) of many proteins, the presence of long stretches of highly repetitive amino acids, and the difficulty in identifying clear structural domains within these proteins using standard prediction computer programs (11). Extracellular proteins, in particular, present an additional challenge because they often have signal peptides and transmembrane regions that can negatively impact expression (1618) and contain structurally important disulfide bonds. However, unlike most other eukaryotic extracellular proteins, Plasmodium cell surface and secreted proteins are not modified by N-linked glycans because of the absence of the necessary enzymes (19).To express Plasmodium proteins for basic research and vaccine development, a diverse range of expression systems have been tried (12) ranging from bacteria (17, 18), yeast (13), Dictyostelium (20), and plants (21) to mammalian cells (22) and cell-free systems (2325). To circumvent the problem of codon usage, bacterial (26) and yeast (27) strains with modified tRNA pools have been developed, or sequences of the gene of interest synthesized and codon-optimized to match that of the expression host (28, 29). Although Escherichia coli has been the most popular expression system because of its relative simplicity and cost effectiveness, large-scale production of soluble functional Plasmodium falciparum recombinant proteins remains challenging with success rates ranging from just 6 to 21% (17, 18) and is often hindered by the need for complex refolding procedures. Similarly, attempts have been made to compile large panels of parasite proteins using in vitro translation systems (23, 25, 30, 31). These systems, however, require reducing conditions and are therefore not generally suitable for the systematic expression of extracellular proteins that occupy an oxidizing environment and critically require the formation of disulfide bonds for proper function. As a result, functional analyses of extracellular parasite proteins have often been restricted to smaller subfragments of the proteins that can be expressed in a soluble form rather than the entire extracellular region. Although eukaryotic expression systems are able to add disulfide bonds, they also often inappropriately glycosylate parasite proteins, adding further complication (32). A generic method that would overcome these technical challenges to express, in a systematic way, panels of recombinant Plasmodium proteins that have retained their native function and conformation would therefore be a valuable resource for the molecular investigations of erythrocyte invasion and the development of a blood stage vaccine.To generate a resource of correctly folded recombinant merozoite proteins, we used a mammalian expression system and established the parameters necessary for high-level expression. Using this method, we compiled a panel of 42 proteins that corresponds to the repertoire of abundant cell surface and secreted merozoite proteins of the 3D7 strain of Plasmodium falciparum. Biochemical activity of these proteins was demonstrated by recapitulating known protein interactions and by showing conformation-sensitive immunoreactivity of the recombinant proteins using immune sera.  相似文献   

8.
9.
10.
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.Sleeping sickness (African trypanosomiasis), caused by Trypanosoma brucei, and malaria, caused by Plasmodium falciparum, are significant, parasitic diseases of sub-Saharan Africa (1). Chagas'' disease (South American trypanosomiasis), caused by Trypanosoma cruzi, affects approximately, 16–18 million people in South and Central America. For all three of these protozoan diseases, resistance and toxicity to current therapies makes treatment increasingly problematic, and thus the development of new drugs is an important priority (24).T. cruzi, T. brucei, and P. falciparum produce an array of potential target enzymes implicated in pathogenesis and host cell invasion, including a number of essential and closely related papain-family cysteine proteases (5, 6). Inhibitors of cruzain and rhodesain, major cathepsin L-like papain-family cysteine proteases of T. cruzi and T. brucei rhodesiense (710) display considerable antitrypanosomal activity (11, 12), and some classes have been shown to cure T. cruzi infection in mouse models (11, 13, 14).In P. falciparum, the papain-family cysteine proteases falcipain-2 (FP-2)6 and falcipain-3 (FP-3) are known to catalyze the proteolysis of host hemoglobin, a process that is essential for the development of erythrocytic parasites (1517). Specific inhibitors, targeted to both enzymes, display antiplasmodial activity (18). However, although the abnormal phenotype of FP-2 knock-outs is “rescued” during later stages of trophozoite development (17), FP-3 has proved recalcitrant to gene knock-out (16) suggesting a critical function for this enzyme and underscoring its potential as a drug target.Sequence analyses and substrate profiling identify cruzain, rhodesain, and FP-3 as cathepsin L-like, and several studies describe classes of small molecule inhibitors that target multiple cathepsin L-like cysteine proteases, some with overlapping antiparasitic activity (1922). Among these small molecules, vinyl sulfones have been shown to be effective inhibitors of a number of papain family-like cysteine proteases (19, 2327). Vinyl sulfones have many desirable attributes, including selectivity for cysteine proteases over serine proteases, stable inactivation of the target enzyme, and relative inertness in the absence of the protease target active site (25). This class has also been shown to have desirable pharmacokinetic and safety profiles in rodents, dogs, and primates (28, 29). We have determined the crystal structures of cruzain, rhodesain, and FP-3 bound to vinyl sulfone inhibitors and performed inhibition kinetics for each enzyme. Our results highlight key areas of interaction between proteases and inhibitors. These results help validate the vinyl sulfones as a class of antiparasitic drugs and provide structural insights to facilitate the design or modification of other small molecule inhibitor scaffolds.  相似文献   

11.
12.
13.
Ribosomal protein S1 has been shown to be a significant effector of prokaryotic translation. The protein is in fact capable of efficiently initiating translation, regardless of the presence of a Shine-Dalgarno sequence in mRNA. Structural insights into this process have remained elusive, as S1 is recalcitrant to traditional techniques of structural analysis, such as x-ray crystallography. Through the application of protein cross-linking and high resolution mass spectrometry, we have detailed the ribosomal binding site of S1 and have observed evidence of its dynamics. Our results support a previous hypothesis that S1 acts as the mRNA catching arm of the prokaryotic ribosome. We also demonstrate that in solution the major domains of the 30S subunit are remarkably flexible, capable of moving 30–50Å with respect to one another.Initiation of translation is often the rate-limiting step of protein biosynthesis (1). In prokaryotes, this process is widely recognized to be directed by the Shine-Dalgarno (S.D.)1 sequence of mRNA and its complementation with the 3′ end of 16S rRNA (2). However, binding of the S.D. sequence to the ribosome is not obligatory for initiation. Ribosomal protein S1, widely conserved in prokaryotes, (3) has been shown to efficiently initiate translation, regardless of the presence of an S.D. sequence (4, 5).S1 is a strikingly atyptical ribosomal protein, being both the largest (61 kDa) and the most acidic (pI 4.7) (6). The protein is composed of six homologous repeats each forming beta barrel domains (3) that in solution comprise a highly elongated structure spanning up to ca. 230 Å (7). This length is comparable to the diameter of the ribosome itself. In addition to these anomalous characteristics, S1 is also one of only two ribosomal proteins that has been attributed functional significance (6). Ribosomal protein S1, for instance, has no apparent role in the assembly of the ribosome, (2) yet is critical for translation in E. coli (8, 9). The functional significance of S1 is related to its most pronounced characteristic, the ability to simultaneously bind mRNA and the ribosome. Analysis of fragments produced by limited proteolysis and chemical cleavage of S1 has shown that an N-terminal fragment of S1 (residues 1–193) binds the ribosome (10) but not RNA (11). Likewise, a C-terminal fragment (res 172–557) binds RNA (12, 13) but not the ribosome (6, 10). By nature of this bi-functional structure, S1 enhances the E. coli ribosome''s affinity for RNA ∼5000 fold (14) and can directly mediate initiation of translation by binding the 5′ UTR of mRNA (4, 5). These observations have led to the hypothesis that S1 acts as a catching arm for the prokaryotic ribosome, working to bring mRNA to the proximity of the ribosome and thereby facilitate initiation (6).Unfortunately, structural analyses capturing how S1 is able to function in this manner remain elusive. A high-resolution crystal structure of ribosome bound S1, or even free S1, does not exist, because S1 is recalcitrant to crystallography (6). Preparation of ribosomes for x-ray crystallography actually involves the deliberate removal of ribosomal protein S1 as a means to improve the reproducibility of crystallization and the quality of the ribosome crystals formed (1517). The structure and interactions of the protein have nevertheless intrigued structural biologists for decades. However, studies completed to date have failed to convincingly demonstrate the interaction between S1 and the rest of the 30S subunit, because they were incapable of localizing the individual S1 domains (16, 1820).We have studied the binding of S1 to the 30S subunit by combining cross-linking with mass spectrometry. Chemical cross-linking has long been appreciated as a technique to probe protein-protein interactions (21, 22). With the advent of modern mass spectrometers, it can be very effectively employed to confidently identify the exact residues involved in linkages (2328). In most cross-linking analyses, protein residues are targeted for covalent modification with a molecule that contains two reactive groups separated by a spacer arm of known length. Only protein residues closer than the length of the spacer arm are capable of being linked. Identification of cross-linked residues thereby provides distance constraints for structural modeling. In this work, the novel amidinating protein cross-linker, DEST (diethyl suberthioimidate), was employed (29, 30). This amine reactive reagent, unlike commercially available reagents, preserves the native basicity of the residues it modifies while being effective at physiological pH. Use of the reagent is unlikely to perturb protein structure and the modifications it imparts are compatible with ionization for mass spectrometry. We have additionally shown that the cross-links it forms can be efficiently enriched from other components of proteolytic digests using strong cation exchange (SCX) chromatography, (30) and that DEST cross-linking of ribosomes yields structural information in excellent agreement with x-ray crystallography (29). Although DEST is an 11Å spacer arm cross-linker, it links alpha carbons up to 24Å apart because of the length and flexibility of lysine side chains. Nevertheless, this is sufficient resolution to approximate the binding positions of the 10kDa domains of S1. Furthermore, multiple cross-linking of a single domain significantly enhances the resolution with which it can be localized.Here, through the application of protein cross-linking and high resolution mass spectrometry, we show that S1 binds to the 30S subunit near the anti-S.D. motif of the 16S rRNA, demonstrate that it is highly elongated even when bound to the ribosome, and provide evidence that its C-terminal mRNA binding region is remarkably dynamic. Our results thus indicate S1 is structurally poised, as previously hypothesized, (6) to act as the mRNA catching arm of the prokaryotic ribosome.  相似文献   

14.
15.
16.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号